大家好,我是小z
今天给大家来一波实战,使用Python自动化生成数据报表!
从一条条的数据中,创建出一张数据报表,得出你想要的东西,提高效率。
主要使用到pandas、xlwings以及matplotlib这几个库。
先来看一下动态的GIF,都是程序自动生成。
下面我们就来看看这个案例吧,水果蔬菜销售报表。
原始数据如下,主要有水果蔬菜名称、销售日期、销售数量、平均价格、平均成本、总收入、总成本、总利润等。
先导入相关库,使用pandas读取原始数据。
import pandas as pd
import xlwings as xw
import matplotlib.pyplot as plt# 对齐数据
pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True)# 读取数据
df = pd.read_csv(r"fruit_and_veg_sales.csv")
print(df)
结果如下。
一共是有1000行的销售数据。
使用xlwings库创建一个Excel工作簿,在工作簿中创建一个表,表名为fruit_and_veg_sales,然后将原始数据复制进去。
# 创建原始数据表并复制数据
wb = xw.Book()
sht = wb.sheets["Sheet1"]
sht.name = "fruit_and_veg_sales"
sht.range("A1").options(index=False).value = d
关于xlwings库的使用,推荐两个文档地址
中文版:
https://www.kancloud.cn/gnefnuy/xlwings-docs/1127455
英文版:
https://docs.xlwings.org/en/stable/index.html
推荐使用中文版,可以降低学习难度...
当然关于Excel的VBA操作,也可以看看微软的文档。
地址:
https://docs.microsoft.com/zh-cn/office/vba/api/overview/excel
将原始数据取过来后,再在工作簿中创建一个可视化表,即Dashboard表。
# 创建表
wb.sheets.add('Dashboard')
sht_dashboard = wb.sheets('Dashboard')
现在,我们有了一个包含两个工作表的Excel工作簿。fruit_and_veg_sales表有我们的数据,Dashboard表则是空白的。
下面使用pandas来处理数据,生成Dashboard表的数据信息。
DashBoard表的头两个表格,一个是产品的利润表格,一个是产品的销售数量表格。
使用到了pandas的数据透视表函数。
# 总利润透视表
pv_total_profit = pd.pivot_table(df, index='类别', values='总利润(美元)', aggfunc='sum')
print(pv_total_profit)# 销售数量透视表
pv_quantity_sold = pd.pivot_table(df, index='类别', values='销售数量', aggfunc='sum')
print(pv_quantity_sold)
得到数据如下。
稍后会将数据放置到Excel的表中去。
下面对月份进行分组汇总,得出每个月的销售情况。
# 查看每列的数据类型
print(df.dtypes)
df["销售日期"] = pd.to_datetime(df["销售日期"])# 每日的数据情况
gb_date_sold = df.groupby(df["销售日期"].dt.to_period('m')).sum()[["销售数量", '总收入(美元)', '总成本(美元)', "总利润(美元)"]]
gb_date_sold.index = gb_date_sold.index.to_series().astype(str)
print(gb_date_sold)
得到结果如下。
这里先对数据进行了查询,发现日期列为object,是不能进行分组汇总的。
所以使用了pd.to_datetime()对其进行了格式转换,而后根据时间进行分组汇总,得到每个月的数据情况。
最后一个groupby将为Dashboard表提供第四个数据信息。
# 总收入前8的日期数据
gb_top_revenue = (df.groupby(df["销售日期"]).sum().sort_values('总收入(美元)', ascending=False).head(8))[["销售数量", '总收入(美元)', '总成本(美元)', "总利润(美元)"]]
print(gb_top_revenue)
总收入前8的日期,得到结果如下。
现在我们有了4份数据,可以将其附加到Excel中。
# 设置背景颜色, 从A1单元格到Z1000单元格的矩形区域
sht_dashboard.range('A1:Z1000').color = (198, 224, 180)# A、B列的列宽
sht_dashboard.range('A:B').column_width = 2.22
print(sht_dashboard.range('B2').api.font_object.properties.get())
# B2单元格, 文字内容、字体、字号、粗体、颜色、行高(主标题)
sht_dashboard.range('B2').value = '销售数据报表'
sht_dashboard.range('B2').api.font_object.name.set('黑体')
sht_dashboard.range('B2').api.font_object.font_size.set(48)
sht_dashboard.range('B2').api.font_object.bold.set(True)
sht_dashboard.range('B2').api.font_object.color.set([0, 0, 0])
sht_dashboard.range('B2').row_height = 61.2# B2单元格到W2单元格的矩形区域, 下边框的粗细及颜色
sht_dashboard.range('B2:W2').api.get_border(which_border=9).weight.set(4)
sht_dashboard.range('B2:W2').api.get_border(which_border=9).color.set([0, 176, 80])# 不同产品总的收益情况图表名称、字体、字号、粗体、颜色(副标题)
sht_dashboard.range('M2').value = '每种产品的收益情况'
sht_dashboard.range('M2').api.font_object.name.set('黑体')
sht_dashboard.range('M2').api.font_object.font_size.set(20)
sht_dashboard.range('M2').api.font_object.bold.set(True)
sht_dashboard.range('M2').api.font_object.color.set([0, 0, 0])# 主标题和副标题的分割线, 粗细、颜色、线型
sht_dashboard.range('L2').api.get_border(which_border=7).weight.set(3)
sht_dashboard.range('L2').api.get_border(which_border=7).color.set([0, 176, 80])
sht_dashboard.range('L2').api.get_border(which_border=7).line_style.set(-4115)
先配置一些基本内容,比如文字,颜色背景,边框线等,如下图。
使用函数,批量生成四个表格的格式。
# 表格生成函数.
def create_formatted_summary(header_cell, title, df_summary, color):"""Parameters----------header_cell : Str左上角单元格位置, 放置数据title : Str当前表格的标题df_summary : DataFrame表格的数据color : Str表格填充色"""# 可选择的表格填充色colors = {"purple": [(112, 48, 160), (161, 98, 208)],"blue": [(0, 112, 192), (155, 194, 230)],"green": [(0, 176, 80), (169, 208, 142)],"yellow": [(255, 192, 0), (255, 217, 102)]}# 设置表格标题的列宽sht_dashboard.range(header_cell).column_width = 1.5# 获取单元格的行列数row, col = sht_dashboard.range(header_cell).row, sht_dashboard.range(header_cell).column# 设置表格的标题及相关信息, 如:字号、行高、向左居中对齐、颜色、粗体、表格的背景颜色等summary_title_range = sht_dashboard.range((row, col))summary_title_range.value = titlesummary_title_range.api.font_object.font_size.set(14)summary_title_range.row_height = 32.5# 垂直对齐方式summary_title_range.api.verticalalignment = xw.constants.HAlign.xlHAlignCentersummary_title_range.api.font_object.color.set([255, 255, 255])summary_title_range.api.font_object.bold.set(True)sht_dashboard.range((row, col),(row, col + len(df_summary.columns) + 1)).color = colors[color][0] # Darker color# 设置表格内容、起始单元格、数据填充、字体大小、粗体、颜色填充summary_header_range = sht_dashboard.range((row + 1, col + 1))summary_header_range.value = df_summarysummary_header_range = summary_header_range.expand('right')summary_header_range.api.font_object.font_size.set(11)summary_header_range.api.font_object.bold.set(True)sht_dashboard.range((row + 1, col),(row + 1, col + len(df_summary.columns) + 1)).color = colors[color][1] # Darker colorsht_dashboard.range((row + 1, col + 1),(row + len(df_summary), col + len(df_summary.columns) + 1)).autofit()for num in range(1, len(df_summary) + 2, 2):sht_dashboard.range((row + num, col),(row + num, col + len(df_summary.columns) + 1)).color = colors[color][1]# 找到表格的最后一行last_row = sht_dashboard.range((row + 1, col + 1)).expand('down').last_cell.rowside_border_range = sht_dashboard.range((row + 1, col), (last_row, col))# 给表格左边添加带颜色的边框side_border_range.api.get_border(which_border=7).weight.set(3)side_border_range.api.get_border(which_border=7).color.set(colors[color][1])side_border_range.api.get_border(which_border=7).line_style.set(-4115)# 生成4个表格
create_formatted_summary('B5', '每种产品的收益情况', pv_total_profit, 'green')
create_formatted_summary('B17', '每种产品的售出情况', pv_quantity_sold, 'purple')
create_formatted_summary('F17', '每月的销售情况', gb_date_sold, 'blue')
create_formatted_summary('F5', '每日总收入排名Top8 ', gb_top_revenue, 'yellow')
得到结果如下。
可以看到,一行行的数据经过Python的处理,变为一目了然的表格。
最后再绘制一个matplotlib图表,添加一张logo图片,并保存Excel文件。
# 中文显示
plt.rcParams['font.sans-serif']=['Songti SC']# 使用Matplotlib绘制可视化图表, 饼图
fig, ax = plt.subplots(figsize=(6, 3))
pv_total_profit.plot(color='g', kind='bar', ax=ax)# 添加图表到Excel
sht_dashboard.pictures.add(fig, name='ItemsChart',left=sht_dashboard.range("M5").left,top=sht_dashboard.range("M5").top,update=True)# 添加logo到Excel
logo = sht_dashboard.pictures.add(image="pie_logo.png",name='PC_3',left=sht_dashboard.range("J2").left,top=sht_dashboard.range("J2").top+5,update=True)# 设置logo的大小
logo.width = 54
logo.height = 54# 保存Excel文件
wb.save(rf"水果蔬菜销售报表.xlsx")
此处需设置一下中文显示,否则会显示不了中文,只有一个个方框。
得到最终的水果蔬菜销售报表。
本文的示例代码,可以在Mac+Excel2016中运行的,与Windows还是会有一些区别,API函数的调用(pywin32 or appscript)。
比如表格文字的字体设置。
# Windows
sht_dashboard.range('B2').api.font.name = '黑体'# Mac
sht_dashboard.range('B2').api.font_object.name.set('黑体')
文中代码和数据源已经打包好了,具体的地址:
链接:https://pan.baidu.com/s/11aUOqbnoY6PDpGXrzbzxDw
提取码:niub
●详解用户流失原因分析该如何入手?
●12000+字超详细 SQL 语法速成!
后台回复“入群”即可加入小z干货交流群