当前位置: 代码迷 >> 综合 >> 【深度学习】BP神经网络(Backpropagation)简单推导及代码实现
  详细解决方案

【深度学习】BP神经网络(Backpropagation)简单推导及代码实现

热度:87   发布时间:2024-01-17 12:23:47.0

一、原理

1 概括

构造一个神经网络含有两个输入,两个隐含层神经元,两个输出神经元。隐藏层和输出元包括权重和偏置。其结构如下:
在这里插入图片描述
设置输入和输出数据 ( x i , y i ) (x_i,y_i) (xi?,yi?) ( 0.05 , 0.01 ) (0.05,0.01) (0.05,0.01) ( 0.1 , 0.99 ) (0.1,0.99) (0.1,0.99),并为神经元初始化参数,包括权重和偏置。
在这里插入图片描述
BP神经网络的目标是优化权重,使神经网络学会如何正确地将任意输入映射到输出。以输入0.05和0.1,输出0.01和0.99为训练集进行测试。

2 前项传播

将输入层的0.05和0.10输入到隐藏层,通过初始化的权重和偏差进行计算可得到隐含层的输出。之后通过激活函数对隐含层的输出进行非线性化处理,激活函数使用Sigmoid。
f ( x ) = 1 1 + e ? x f(x)=\dfrac{1}{1+e^{-x}} f(x)=1+e?x1?
计算 h 1 h_1 h1?过程如下:
n e t h 1 = w 1 ? i 1 + w 2 ? i 2 + b 1 ? 1 n e t h 1 = 0.15 ? 0.05 + 0.2 ? 0.1 + 0.35 ? 1 = 0.3775 \begin{array}{l} n e t_{h 1}=w_{1} * i_{1}+w_{2} * i_{2}+b_{1} * 1 \\ \\ n e t_{h 1}=0.15 * 0.05+0.2 * 0.1+0.35 * 1=0.3775 \end{array} neth1?=w1??i1?+w2??i2?+b1??1neth1?=0.15?0.05+0.2?0.1+0.35?1=0.3775?
非线性化处理,经过sigmoid激活函数后得:
out  h 1 = 1 1 + e ? n e t h 1 = 1 1 + e ? 0.3775 = 0.593269992 \text { out }_{h 1}=\frac{1}{1+e^{-net_{h1}}}=\frac{1}{1+e^{-0.3775}}=0.593269992  out h1?=1+e?neth1?1?=1+e?0.37751?=0.593269992
采用相同的方式计算 h 2 h_2 h2?得:
out  h 2 = 0.596884378 \text { out }_{h 2}=0.596884378  out h2?=0.596884378
重复上述过程,利用隐含层的输出计算输出层神经元,下面是 o 1 o_1 o1?的计算过程:
net o 1 = w 5 ? out  h 1 + w 6 ? out  h 2 + b 2 ? 1 \text { net}_{o 1}=w_{5} * \text { out }_{h 1}+w_{6} * \text { out }_{h 2}+b_{2} * 1  neto1?=w5?? out h1?+w6?? out h2?+b2??1

net o 1 = 0.4 ? 0.593269992 + 0.45 ? 0.596884378 + 0.6 ? 1 = 1.105905967 \text { net}_{o 1}=0.4 * 0.593269992+0.45 * 0.596884378+0.6 * 1=1.105905967  neto1?=0.4?0.593269992+0.45?0.596884378+0.6?1=1.105905967

out o 1 = 1 1 + e ? n e t o 1 = 1 1 + e ? 1.105905967 = 0.75136507 \text { out}_{o 1}=\frac{1}{1+e^{-n e t_{o 1}}}=\frac{1}{1+e^{-1.105905967}}=0.75136507  outo1?=1+e?neto1?1?=1+e?1.1059059671?=0.75136507
使用同样的方法计算出 o 2 o_2 o2?
out o 2 = 0.772928465 \text {out}_{o 2}=0.772928465 outo2?=0.772928465

3 计算误差

使用均方误差(MSE)函数计算神经元的误差,即使用均方误差作为损失函数。
M S E ( y , y ′ ) = ∑ i = 1 n ( y i ? y i ′ ) 2 n MSE(y,y')=\frac{\sum^n_{i=1}(y_i-y_i')^2}{n} MSE(y,y)=ni=1n?(yi??yi?)2?
其中, y i y_i yi?为第 i 个数据的正确答案, y i ′ y'_i yi?为神经网络给出的预测值。在此问题中, o 1 o_1 o1?的期望输出为0.01,但神经网络的真是输出为0.75136507,因此误差为:
E o 1 = 1 2 ( target  o 1 ? o u t o 1 ) 2 = 1 2 ( 0.01 ? 0.75136507 ) 2 = 0.274811083 E_{o 1}=\frac{1}{2}\left(\text { target }_{o 1}-o u t_{o 1}\right)^{2}=\frac{1}{2}(0.01-0.75136507)^{2}=0.274811083 Eo1?=21?( target o1??outo1?)2=21?(0.01?0.75136507)2=0.274811083
同理得:
E o 2 = 0.023560026 E_{o 2}=0.023560026 Eo2?=0.023560026
神经网络的总误差为这些神经元的误差和,即为:
E total  = E o 1 + E o 2 = 0.274811083 + 0.023560026 = 0.298371109 E_{\text {total }}=E_{o 1}+E_{o 2}=0.274811083+0.023560026=0.298371109 Etotal ?=Eo1?+Eo2?=0.274811083+0.023560026=0.298371109

4 反向传播

使用BP神经网络的目标是更新网络中的每个神经元的权重和偏置,以使它们得实际输出更接近目标输出,从而最大限度地减少每个输出神经元的错误。

4.1 输出层

对于 w 5 w_5 w5?,需要知道 w 5 w_5 w5?的变化量对于总误差变化量的影响,可表示为 ? E total  ? w 5 \frac{\partial E_{\text {total }}}{\partial w_{5}} ?w5??Etotal ??,即 w 5 w_5 w5?的梯度。

通过链式法则可得:
? E total  ? w 5 = ? E total  ? out  o 1 ? ? out  o 1 ? net  o 1 ? ? net  o 1 ? w 5 \frac{\partial E_{\text {total }}}{\partial w_{5}}=\frac{\partial E_{\text {total }}}{\partial \text { out }_{o 1}} * \frac{\partial \text { out }_{o 1}}{\partial \text { net }_{o 1}} * \frac{\partial \text { net }_{o 1}}{\partial w_{5}} ?w5??Etotal ??=? out o1??Etotal ???? net o1?? out o1????w5?? net o1??

这是可视化过程:
在这里插入图片描述
我们需要解决方程的每一个步骤。

首先要分析输出对总误差的影响:
E total  = 1 2 ( target o 1 ? out  o 1 ) 2 + 1 2 ( target ? o 2 ? out o 2 ) 2 E_{\text {total }}=\frac{1}{2}\left(\text { target}_{o 1}-\text { out }_{o 1}\right)^{2}+\frac{1}{2}\left(\operatorname{target}_{o 2}-\text { out}_{o 2}\right)^{2} Etotal ?=21?( targeto1?? out o1?)2+21?(targeto2?? outo2?)2
? E total  ? o u t o 1 = 2 ? 1 2 ( target o 1 ? o u t o 1 ) 2 ? 1 ? ? 1 + 0 \frac{\partial E_{\text {total }}}{\partial o u t_{o 1}}=2 * \frac{1}{2}\left(\text { target}_{o 1}-o u t_{o 1}\right)^{2-1} *-1+0 ?outo1??Etotal ??=2?21?( targeto1??outo1?)2?1??1+0
? E totol  ? o u t o 1 = ? ( target o 1 ? o u t o 1 ) = ? ( 0.01 ? 0.75136507 ) = 0.74136507 \frac{\partial E_{\text {totol }}}{\partial o u t_{o 1}}=-\left(\text { target}_{o 1}-o u t_{o 1}\right)=-(0.01-0.75136507)=0.74136507 ?outo1??Etotol ??=?( targeto1??outo1?)=?(0.01?0.75136507)=0.74136507

对激活函数求偏导得:
out  o 1 = 1 1 + e ? net  o 1 \text { out }_{o 1}=\frac{1}{1+e^{-\text {net }_{o 1}}}  out o1?=1+e?net o1?1?
? out o 1 ? net o 1 = out o 1 ( 1 ? out o 1 ) = 0.75136507 ( 1 ? 0.75136507 ) = 0.186815602 \frac{\partial \text { out}_{o 1}}{\partial \text { net}_{o 1}}=\text { out}_{o 1}\left(1-\text { out}_{o 1}\right)=0.75136507(1-0.75136507)=0.186815602 ? neto1?? outo1??= outo1?(1? outo1?)=0.75136507(1?0.75136507)=0.186815602

最后,计算 n e t o 1 net _{o1} neto1? w 5 w_5 w5?的偏导:
n e t o 1 = w 5 ? o u t h 1 + w 6 ? out  h 2 + b 2 ? 1 {net}_{o1}=w_{5} * { out }_{h1}+w_{6} * \text { out }_{h2}+b_{2} * 1 neto1?=w5??outh1?+w6?? out h2?+b2??1
? n e t o 1 ? w 5 = 1 ? o u t h 1 ? w 5 ( 1 ? 1 ) + 0 + 0 = o u t h 1 = 0.593269992 \frac{\partial{ net}_{o 1}}{\partial w_{5}}=1 * { out}_{h 1} * w_{5}^{(1-1)}+0+0={ out }_{h 1}=0.593269992 ?w5??neto1??=1?outh1??w5(1?1)?+0+0=outh1?=0.593269992
把以上的计算结果乘到一起得:
? E t a t a l ? w 5 = ? E t o t a l ? o u t o 1 ? ? o u t o 1 ? n e t o 1 ? ? n e t a 1 ? w 5 \frac{\partial E_{ {tatal }}}{\partial w_{5}}=\frac{\partial E_{ {total }}}{\partial { out }_{ {o1 }}} * \frac{\partial { out}_{o1}}{\partial net_{o 1}} * \frac{\partial net_{a1}}{\partial w_{5}} ?w5??Etatal??=?outo1??Etotal????neto1??outo1????w5??neta1??
? E t o t a l ? w 5 = 0.74136507 ? 0.186815602 ? 0.593269992 = 0.082167041 \frac{\partial E_{ {total}}}{\partial w_{5}}=0.74136507 * 0.186815602 * 0.593269992=0.082167041 ?w5??Etotal??=0.74136507?0.186815602?0.593269992=0.082167041
为了减少误差,我们对权重进行修正,即用当前的权重中减去修正值乘以学习率,此处设置学习率为0.5:
w 5 + = w 5 ? η ? ? E t o t a l ? w 5 = 0.4 ? 0.5 ? 0.082167041 = 0.35891648 w_{5}^{+}=w_{5}-\eta * \frac{\partial E_{total}}{\partial w_{5}}=0.4-0.5 * 0.082167041=0.35891648 w5+?=w5??η??w5??Etotal??=0.4?0.5?0.082167041=0.35891648
重复以上步骤可计算出 w 6 w_6 w6? w 7 w_7 w7? w 8 w_8 w8?
w 6 + = 0.408666186 w 7 + = 0.511301270 w 8 + = 0.561370121 \begin{array}{l} w_{6}^{+}=0.408666186 \\ w_{7}^{+}=0.511301270 \\ w_{8}^{+}=0.561370121 \end{array} w6+?=0.408666186w7+?=0.511301270w8+?=0.561370121?
此时已经计算出输出层的新权重,当计算出隐含层的权重后,对整个网络的权重进行更新,下面计算隐含层的权重。

4.2 隐含层

接下来,继续使用反向传播计算 w 1 w_1 w1? w 2 w_2 w2? w 3 w_3 w3? w 4 w_4 w4?。根据链式法则可得:
? E t o t a l ? w 1 = ? E t o t a l ? o u t h 1 ? ? o u t h 1 ? n e t h 1 ? ? n e t h 1 ? w 1 \frac{\partial E_{total}}{\partial w_{1}}=\frac{\partial E_{total}}{\partial o u t_{h 1}} * \frac{\partial o u t_{h 1}}{\partial n e t_{h 1}} * \frac{\partial net_{h1}}{\partial w_{1}} ?w1??Etotal??=?outh1??Etotal????neth1??outh1????w1??neth1??
可视化图像为:
在这里插入图片描述
接下来将采用相似的方式处理隐含层的神经元,但是略有不同,考虑到每个隐含层的神经元的输出连接到多个输出, o u t h 1 out_{h1} outh1?影响 o u t o 1 out_{o1} outo1? o u t o 2 out_{o2} outo2?,因此计算 ? E total  d o u t h 1 \frac{\partial E_{\text {total }}}{ {dout}_{h 1}} douth1??Etotal ??需考虑所有输出神经元:
? E t o t a l ? o u t h 1 = ? E o 1 ? o u t h 1 + ? E a 2 ? o u t h 1 \frac{\partial E_{total}}{\partial out_{h 1}}=\frac{\partial E_{o1}}{\partial o u t_{h 1}}+\frac{\partial E_{a 2}}{\partial o u t_{h1}} ?outh1??Etotal??=?outh1??Eo1??+?outh1??Ea2??
其中,
? E o 1 ? o u t h 1 = ? E o 1 ? n e t o 1 ? ? n e t o 1 ? o u t h 1 \frac{\partial E_{o 1}}{\partial o u t_{h 1}}=\frac{\partial E_{o 1}}{\partial net_{o 1}} * \frac{\partial n e t_{o 1}}{\partial o u t_{h 1}} ?outh1??Eo1??=?neto1??Eo1????outh1??neto1??
可通过之前的结果计算 ? E o 1 ? n e t o 1 \frac{\partial E_{o1}}{\partial{ net}_{o 1}} ?neto1??Eo1??
? E a 1 ? n e t o 1 = ? E o 1 ? o u t o 1 ? ? out  t 0 ? n e t o 1 = 0.74136507 ? 0.186815602 = 0.138498562 \frac{\partial E_{a 1}}{\partial n e t_{o 1}}=\frac{\partial E_{o 1}}{\partial o u t_{o 1}} * \frac{\partial \text { out }_{t_{0}}}{\partial n e t_{o 1}}=0.74136507 * 0.186815602=0.138498562 ?neto1??Ea1??=?outo1??Eo1????neto1?? out t0???=0.74136507?0.186815602=0.138498562
并且, ? n e t o 1 ? o u t h 1 = w 5 \frac{\partial { net}_{o 1}}{\partial {out}_{h 1}}=w_5 ?outh1??neto1??=w5?
n e t o 1 = w 5 ? o u t h 1 + w 6 ? o u t h 2 + b 2 ? 1 { net}_{o 1}=w_{5} * out_{h 1}+w_{6} * out_{h 2}+b_{2} * 1 neto1?=w5??outh1?+w6??outh2?+b2??1
? n e t o 1 ? o u t h 1 = w 5 = 0.40 \frac{\partial net_{o 1}}{\partial o u t_{h 1}}=w_{5}=0.40 ?outh1??neto1??=w5?=0.40
将其乘起来得:
? E o 1 ? o u t h 1 = ? E o 1 ? n e t o 1 ? ? n e t o 1 ? o u t h 1 = 0.138498562 ? 0.40 = 0.055399425 \frac{\partial E_{o 1}}{\partial o u t_{h 1}}=\frac{\partial E_{o 1}}{\partial n e t_{o 1}} * \frac{\partial n e t_{o 1}}{\partial o u t_{h 1}}=0.138498562 * 0.40=0.055399425 ?outh1??Eo1??=?neto1??Eo1????outh1??neto1??=0.138498562?0.40=0.055399425
同理可得,
? E o 2 ? o u t h 1 = ? 0.019049119 \frac{\partial E_{o 2}}{\partial o u t_{h 1}}=-0.019049119 ?outh1??Eo2??=?0.019049119
因此,
? E t o t a l ? o u t h 1 = ? E o 1 ? o u t h 1 + ? E o 2 ? o u t h 1 = 0.055399425 + ? 0.019049119 = 0.036350306 \frac{\partial E_{total}}{\partial out_{h 1}}=\frac{\partial E_{o 1}}{\partial o u t_{h 1}}+\frac{\partial E_{o 2}}{\partial o u t_{h 1}}=0.055399425+-0.019049119=0.036350306 ?outh1??Etotal??=?outh1??Eo1??+?outh1??Eo2??=0.055399425+?0.019049119=0.036350306
现在知道 ? E t o t a l ? o u t h 1 \frac{\partial E_{total}}{\partial out_{h 1}} ?outh1??Etotal??,需要计算出 ? o u t h 1 ? n e t h 1 \frac{\partial out_{h 1}}{\partial net_{h 1}} ?neth1??outh1?? ? n e t h 1 ? w \frac{\partial n e t_{h 1}}{\partial w} ?w?neth1??
o u t h 1 = 1 1 + e ? n e t h 1 out_{h 1}=\frac{1}{1+e^{-net_{h1}}} outh1?=1+e?neth1?1?
? o u t h 1 ? n e t h 1 = o u t h 1 ( 1 ? o u t h 1 ) = 0.59326999 ( 1 ? 0.59326999 ) = 0.241300709 \frac{\partial out_{h 1}}{\partial net_{h 1}}=out_{h 1}\left(1-out_{h 1}\right)=0.59326999(1-0.59326999)=0.241300709 ?neth1??outh1??=outh1?(1?outh1?)=0.59326999(1?0.59326999)=0.241300709
采用相同的方式计算网络输入 h 1 h_1 h1? w w w的偏导数:
n e t h 1 = w 1 ? i 1 + w 3 ? i 2 + b 1 ? 1 net_{h 1}=w_{1} * i_{1}+w_{3} * i_{2}+b_{1} * 1 neth1?=w1??i1?+w3??i2?+b1??1
? n e t h 1 ? w 1 = i 1 = 0.05 \frac{\partial n e t_{h 1}}{\partial w_{1}}=i_{1}=0.05 ?w1??neth1??=i1?=0.05
把它们乘到一起:
? E t o t a l ? w 1 = ? E t o t a t ? o u t h 1 ? ? o u t h 1 ? n e t h 1 ? ? n e t h 1 ? w 1 \frac{\partial E_{total}}{\partial w_{1}}=\frac{\partial E_{totat}}{\partial o u t_{h 1}} * \frac{\partial o u t_{h 1}}{\partial n e t_{h 1}} * \frac{\partial n e t_{h 1}}{\partial w_{1}} ?w1??Etotal??=?outh1??Etotat????neth1??outh1????w1??neth1??
? E t o t a l ? w 1 = 0.036350306 ? 0.241300709 ? 0.05 = 0.000438568 \frac{\partial E_{total}}{\partial w_{1}}=0.036350306 * 0.241300709 * 0.05=0.000438568 ?w1??Etotal??=0.036350306?0.241300709?0.05=0.000438568
现在,可以对 w 1 w_1 w1?进行更新:
w 1 + = w 1 ? η ? ? E t o t a l ? w 1 = 0.15 ? 0.5 ? 0.000438568 = 0.149780716 w_{1}^{+}=w_{1}-\eta * \frac{\partial E_{total }}{\partial w_{1}}=0.15-0.5 * 0.000438568=0.149780716 w1+?=w1??η??w1??Etotal??=0.15?0.5?0.000438568=0.149780716
重复以上步骤计算 w 2 w_2 w2? w 3 w_3 w3? w 4 w_4 w4?
w 2 + = 0.19956143 w 3 + = 0.24975114 w 4 + = 0.29950229 \begin{array}{l} w_{2}^{+}=0.19956143 \\ w_{3}^{+}=0.24975114 \\ w_{4}^{+}=0.29950229 \end{array} w2+?=0.19956143w3+?=0.24975114w4+?=0.29950229?
最后,更新所有神经元的权重,当输入 0.05 0.05 0.05 0.1 0.1 0.1时,网络上的总误差从为 0.298371109 0.298371109 0.298371109转变为 0.291027924 0.291027924 0.291027924。 重复以上过程 10 , 000 10,000 10,000次后,总误差将降到 3.5102 ? 1 0 ? 5 3.5102*10^{-5} 3.5102?10?5。 此时,当输入 0.05 0.05 0.05 0.1 0.1 0.1时,两个输出神经元输出的结果分别为 0.015912196 0.015912196 0.015912196(期望值为 0.01 0.01 0.01)和 0.984065734 0.984065734 0.984065734(期望值为 0.99 0.99 0.99)。训练 20 , 000 20,000 20,000次后,总误差将降到 7.837 ? 1 0 ? 6 7.837*10^{-6} 7.837?10?6

二、代码

import random
import math#
# Shorthand:
# "pd_" as a variable prefix means "partial derivative"
# "d_" as a variable prefix means "derivative"
# "_wrt_" is shorthand for "with respect to"
# "w_ho" and "w_ih" are the index of weights from hidden to output layer neurons and input to hidden layer neurons respectively
#
# Comment references:
#
# [1] Wikipedia article on Backpropagation
# http://en.wikipedia.org/wiki/Backpropagation#Finding_the_derivative_of_the_error
# [2] Neural Networks for Machine Learning course on Coursera by Geoffrey Hinton
# https://class.coursera.org/neuralnets-2012-001/lecture/39
# [3] The Back Propagation Algorithm
# https://www4.rgu.ac.uk/files/chapter3%20-%20bp.pdfclass NeuralNetwork:LEARNING_RATE = 0.5def __init__(self, num_inputs, num_hidden, num_outputs, hidden_layer_weights = None, hidden_layer_bias = None, output_layer_weights = None, output_layer_bias = None):self.num_inputs = num_inputsself.hidden_layer = NeuronLayer(num_hidden, hidden_layer_bias)self.output_layer = NeuronLayer(num_outputs, output_layer_bias)self.init_weights_from_inputs_to_hidden_layer_neurons(hidden_layer_weights)self.init_weights_from_hidden_layer_neurons_to_output_layer_neurons(output_layer_weights)def init_weights_from_inputs_to_hidden_layer_neurons(self, hidden_layer_weights):weight_num = 0for h in range(len(self.hidden_layer.neurons)):for i in range(self.num_inputs):if not hidden_layer_weights:self.hidden_layer.neurons[h].weights.append(random.random())else:self.hidden_layer.neurons[h].weights.append(hidden_layer_weights[weight_num])weight_num += 1def init_weights_from_hidden_layer_neurons_to_output_layer_neurons(self, output_layer_weights):weight_num = 0for o in range(len(self.output_layer.neurons)):for h in range(len(self.hidden_layer.neurons)):if not output_layer_weights:self.output_layer.neurons[o].weights.append(random.random())else:self.output_layer.neurons[o].weights.append(output_layer_weights[weight_num])weight_num += 1def inspect(self):print('------')print('* Inputs: {}'.format(self.num_inputs))print('------')print('Hidden Layer')self.hidden_layer.inspect()print('------')print('* Output Layer')self.output_layer.inspect()print('------')def feed_forward(self, inputs):hidden_layer_outputs = self.hidden_layer.feed_forward(inputs)return self.output_layer.feed_forward(hidden_layer_outputs)# Uses online learning, ie updating the weights after each training casedef train(self, training_inputs, training_outputs):self.feed_forward(training_inputs)# 1. Output neuron deltaspd_errors_wrt_output_neuron_total_net_input = [0] * len(self.output_layer.neurons)for o in range(len(self.output_layer.neurons)):# ?E/?z?pd_errors_wrt_output_neuron_total_net_input[o] = self.output_layer.neurons[o].calculate_pd_error_wrt_total_net_input(training_outputs[o])# 2. Hidden neuron deltaspd_errors_wrt_hidden_neuron_total_net_input = [0] * len(self.hidden_layer.neurons)for h in range(len(self.hidden_layer.neurons)):# We need to calculate the derivative of the error with respect to the output of each hidden layer neuron# dE/dy? = Σ ?E/?z? * ?z/?y? = Σ ?E/?z? * w??d_error_wrt_hidden_neuron_output = 0for o in range(len(self.output_layer.neurons)):d_error_wrt_hidden_neuron_output += pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].weights[h]# ?E/?z? = dE/dy? * ?z?/?pd_errors_wrt_hidden_neuron_total_net_input[h] = d_error_wrt_hidden_neuron_output * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_input()# 3. Update output neuron weightsfor o in range(len(self.output_layer.neurons)):for w_ho in range(len(self.output_layer.neurons[o].weights)):# ?E?/?w?? = ?E/?z? * ?z?/?w??pd_error_wrt_weight = pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].calculate_pd_total_net_input_wrt_weight(w_ho)# Δw = α * ?E?/?w?self.output_layer.neurons[o].weights[w_ho] -= self.LEARNING_RATE * pd_error_wrt_weight# 4. Update hidden neuron weightsfor h in range(len(self.hidden_layer.neurons)):for w_ih in range(len(self.hidden_layer.neurons[h].weights)):# ?E?/?w? = ?E/?z? * ?z?/?w?pd_error_wrt_weight = pd_errors_wrt_hidden_neuron_total_net_input[h] * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_weight(w_ih)# Δw = α * ?E?/?w?self.hidden_layer.neurons[h].weights[w_ih] -= self.LEARNING_RATE * pd_error_wrt_weightdef calculate_total_error(self, training_sets):total_error = 0for t in range(len(training_sets)):training_inputs, training_outputs = training_sets[t]self.feed_forward(training_inputs)for o in range(len(training_outputs)):total_error += self.output_layer.neurons[o].calculate_error(training_outputs[o])return total_errorclass NeuronLayer:def __init__(self, num_neurons, bias):# Every neuron in a layer shares the same biasself.bias = bias if bias else random.random()self.neurons = []for i in range(num_neurons):self.neurons.append(Neuron(self.bias))def inspect(self):print('Neurons:', len(self.neurons))for n in range(len(self.neurons)):print(' Neuron', n)for w in range(len(self.neurons[n].weights)):print(' Weight:', self.neurons[n].weights[w])print(' Bias:', self.bias)def feed_forward(self, inputs):outputs = []for neuron in self.neurons:outputs.append(neuron.calculate_output(inputs))return outputsdef get_outputs(self):outputs = []for neuron in self.neurons:outputs.append(neuron.output)return outputsclass Neuron:def __init__(self, bias):self.bias = biasself.weights = []def calculate_output(self, inputs):self.inputs = inputsself.output = self.squash(self.calculate_total_net_input())return self.outputdef calculate_total_net_input(self):total = 0for i in range(len(self.inputs)):total += self.inputs[i] * self.weights[i]return total + self.bias# Apply the logistic function to squash the output of the neuron# The result is sometimes referred to as 'net' [2] or 'net' [1]def squash(self, total_net_input):return 1 / (1 + math.exp(-total_net_input))# Determine how much the neuron's total input has to change to move closer to the expected output## Now that we have the partial derivative of the error with respect to the output (?E/?y?) and# the derivative of the output with respect to the total net input (dy?/dz?) we can calculate# the partial derivative of the error with respect to the total net input.# This value is also known as the delta (δ) [1]# δ = ?E/?z? = ?E/?y? * dy?/dz?#def calculate_pd_error_wrt_total_net_input(self, target_output):return self.calculate_pd_error_wrt_output(target_output) * self.calculate_pd_total_net_input_wrt_input();# The error for each neuron is calculated by the Mean Square Error method:def calculate_error(self, target_output):return 0.5 * (target_output - self.output) ** 2# The partial derivate of the error with respect to actual output then is calculated by:# = 2 * 0.5 * (target output - actual output) ^ (2 - 1) * -1# = -(target output - actual output)## The Wikipedia article on backpropagation [1] simplifies to the following, but most other learning material does not [2]# = actual output - target output## Alternative, you can use (target - output), but then need to add it during backpropagation [3]## Note that the actual output of the output neuron is often written as y? and target output as t? so:# = ?E/?y? = -(t? - y?)def calculate_pd_error_wrt_output(self, target_output):return -(target_output - self.output)# The total net input into the neuron is squashed using logistic function to calculate the neuron's output:# y? = φ = 1 / (1 + e^(-z?))# Note that where ? represents the output of the neurons in whatever layer we're looking at and ? represents the layer below it## The derivative (not partial derivative since there is only one variable) of the output then is:# dy?/dz? = y? * (1 - y?)def calculate_pd_total_net_input_wrt_input(self):return self.output * (1 - self.output)# The total net input is the weighted sum of all the inputs to the neuron and their respective weights:# = z? = net? = x?w? + x?w? ...## The partial derivative of the total net input with respective to a given weight (with everything else held constant) then is:# = ?z?/?w? = some constant + 1 * x?w?^(1-0) + some constant ... = x?def calculate_pd_total_net_input_wrt_weight(self, index):return self.inputs[index]#### Blog post example:nn = NeuralNetwork(2, 2, 2, hidden_layer_weights=[0.15, 0.2, 0.25, 0.3], hidden_layer_bias=0.35, output_layer_weights=[0.4, 0.45, 0.5, 0.55], output_layer_bias=0.6)
for i in range(10000):nn.train([0.05, 0.1], [0.01, 0.99])print(f"epoch:{
      i}\terror:{
      round(nn.calculate_total_error([[[0.05, 0.1], [0.01, 0.99]]]), 9)}")# XOR example:# training_sets = [
# [[0, 0], [0]],
# [[0, 1], [1]],
# [[1, 0], [1]],
# [[1, 1], [0]]
# ]# nn = NeuralNetwork(len(training_sets[0][0]), 5, len(training_sets[0][1]))
# for i in range(10000):
# training_inputs, training_outputs = random.choice(training_sets)
# nn.train(training_inputs, training_outputs)
# print(i, nn.calculate_total_error(training_sets))

参考:https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

  相关解决方案