当前位置: 代码迷 >> 综合 >> CodeForces - 239C. Not Wool Sequences
  详细解决方案

CodeForces - 239C. Not Wool Sequences

热度:4   发布时间:2024-01-15 06:24:06.0

C. Not Wool Sequences

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

A sequence of non-negative integers a1,?a2,?...,?an of length n is called a wool sequence if and only if there exists two integers l and r(1?≤?l?≤?r?≤?n) such that . In other words each wool sequence contains a subsequence of consecutive elements with xor equal to 0.

The expression  means applying the operation of a bitwise xor to numbers x and y. The given operation exists in all modern programming languages, for example, in languages C++ and Java it is marked as "^", in Pascal — as "xor".

In this problem you are asked to compute the number of sequences made of n integers from 0 to 2m?-?1 that are not a wool sequence. You should print this number modulo 1000000009 (109?+?9).

Input

The only line of input contains two space-separated integers n and m (1?≤?n,?m?≤?105).

Output

Print the required number of sequences modulo 1000000009 (109?+?9) on the only line of output.

Examples

input

Copy

3 2

output

Copy

6

Note

Sequences of length 3 made of integers 0, 1, 2 and 3 that are not a wool sequence are (1, 3, 1), (1, 2, 1), (2, 1, 2), (2, 3, 2), (3, 1, 3) and (3, 2, 3).

 

题意:

从0~2^m-1个数选n个数排列,保证找不到任意区间的异或和等于0,问满足的排列?

分析;

我们对a[i]求前缀异或和s[i],那么a[i]^……^a[j]=s[j]^s[i-1]!=0,所以我们只需保证s[j]和s[i-1]不相同即可。我们还知道如果把任意一段前缀异或和统计起来,然后去重,他肯定包含0~2^m-1个数。

我们知道0不能选,所有从(2^m-1)个数选择n个不同的即可。

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef long long ll;
///b&1取出b二进制位下表示的最低位
///b>>1舍弃最低位
const ll MOD=1e9+9;
ll quick_qow(ll a,ll b,ll p)///计算a^b %p
{ll ans=1%p;///ans不能为1,b为0,p为1的情况不成立for(;b;b>>=1){if(b&1) ans=(ans*a)%p ;a=a*a%p ;}return ans;
}
int main()
{LL n,m;scanf("%lld%lld",&n,&m);LL k=quick_qow(2,m,MOD);LL ans=1;for(int i=0;i<n;i++){ans=(ans*(k-1-i))%MOD;}printf("%lld\n",ans);return 0;
}