You are given three integers aa, bb and xx. Your task is to construct a binary string ssof length n=a+bn=a+b such that there are exactly aa zeroes, exactly bb ones and exactlyxx indices ii (where 1≤i<n1≤i<n) such that si≠si+1si≠si+1. It is guaranteed that the answer always exists.
For example, for the string "01010" there are four indices ii such that 1≤i<n1≤i<n andsi≠si+1si≠si+1 (i=1,2,3,4i=1,2,3,4). For the string "111001" there are two such indices ii (i=3,5i=3,5).
Recall that binary string is a non-empty sequence of characters where each character is either 0 or 1.
InputThe first line of the input contains three integers aa, bb and xx (1≤a,b≤100,1≤x<a+b)1≤a,b≤100,1≤x<a+b).
OutputPrint only one string ss, where ss is any binary string satisfying conditions described above. It is guaranteed that the answer always exists.
Examples2 2 1
1100
3 3 3
101100
5 3 6
01010100
All possible answers for the first example:
- 1100;
- 0011.
All possible answers for the second example:
- 110100;
- 101100;
- 110010;
- 100110;
- 011001;
- 001101;
- 010011;
- 001011.
#include <iostream>
#include <bits/stdc++.h>
using namespace std;int main()
{int a,b,n,x,i,j,minn;char c,d;minn = 10000;cin>>a>>b>>n;minn = min(a,b);if(a>b) c = '0',d = '1';else c = '1',d = '0';if(n%2==0){for(i=0;i<n;i++){if(i%2==0) printf("%c",c);else printf("%c",d);}//cout<<i<<minn<<minn-n/2<<endl;for(;i<n+minn-n/2;i++)printf("%c",d);for(;i<a+b;i++){printf("%c",c);}}else{for(i=0;i<n;i++){if(i%2==0) printf("%c",d);else printf("%c",c);}for(;i<n+minn-n/2-1;i++)printf("%c",d);for(;i<a+b;i++){printf("%c",c);}}return 0;
}