当前位置: 代码迷 >> 综合 >> POJ 1639 k度限制生成树
  详细解决方案

POJ 1639 k度限制生成树

热度:21   发布时间:2024-01-13 17:58:45.0

题意就是求最小生成树  但是有一个顶点的度必须不大于k

具体的方法网上都有,但是代码写起来之复杂难以令人想象,我由于代码能力还太弱,导致只能看着别人的代码重写一遍,优化了一些部分。

1.求出除去K度点的最小生成森林,设森林数为m
2.将这m棵树与K度点用每棵树中与K度点距离最短的点相连,生成一个m度最小生成树,总答案为这个生成树的所有边长之和
3.迭代k-m次,尝试将m度生成树扩展为K度生成树,并求出最小生成树的长度
  (1)扫描k度点的所有邻接点,(注意,这是扫描的原图) 找到一个点使得(新的生成树中该点到K度点最大边的长度)与(原图中K度点到该点的距离)之差最大。 (注意,该点不能是生成树中直接与K度点相连的点)
(2) 若(1)找出的差值不大于0,则无须继续往下找,否则,在新的生成树中连接该点到K度点,并将最大边替换掉,然后从该点开始更新最大边。此时,m度生成树变为m+1度生成树,总答案减去该差值。
(3)循环以上步骤,直到变为K度生成树或者跳出
4.打印答案


#include <iostream>
#include <map>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define MAXN 105
#define MAXM 100005
#define INF 1000000000
using namespace std;
struct node
{int v, w, next;
}edge[MAXM];
struct Edge
{int u, v, w;Edge(){}Edge(int a, int b, int c){u = a; v = b; w = c;}void init(){w = 0;}bool operator >(const Edge &a) const{return w > a.w;}
}mx[MAXN];//用于存储每个点到park点的最大边
int n, m, k, sum;//sum为结果
int e, head[MAXN], vis[MAXN], dis[MAXN], use[MAXN][MAXN];//head用于邻接表 vis是标记数组 dis用于求最小生成树
//use用来标记两点之间是否有边
int blocks, size[MAXN], belong[MAXN], nearvex[MAXN];//blocks表示去除park后有几个连通块  size是每个连通块的个数
//belong表示该点属于哪个连通块  nearvex用于在生成树中记录边
int point[MAXN], link[MAXN]; //point表示每个连通块中与park点最近的点  link则是该点与park点的距离
map<string, int>mp; //用于映射名字
void init()
{e = 0, n = 1;blocks = 0, sum = 0;memset(head, -1, sizeof(head));memset(vis, 0, sizeof(vis));memset(size, 0, sizeof(size));memset(use, 0, sizeof(use));for(int i = 1; i < MAXN; i++) mx[i].init();memset(nearvex, 0, sizeof(nearvex));mp.clear();
}
void insert(int x, int y, int w)
{edge[e].v = y;edge[e].w = w;edge[e].next = head[x];head[x] = e++;
}
int getId(char s[])
{if(mp.find(s) == mp.end()) mp[s] = ++n;else return mp[s];return n;
}
void dfs(int v) //该dfs将图分成了一些连通块
{vis[v] = 1;size[blocks]++;belong[v] = blocks;for(int i = head[v]; i != -1; i = edge[i].next)if(!vis[edge[i].v]) dfs(edge[i].v);
}
void prim(int cur) //对某个连通块求最小生成树
{for(int i = 1; i <= n; i++) dis[i] = INF;for(int i = 1; i <= n; i++) //设置块内某点为起点来求生成树if(belong[i] == cur){dis[i] = 0;break;}for(int i = 1; i <= size[cur]; i++)  //循环次数为该块的顶点数,因为这与一般的求MST略微不同{int mi = INF, pos = -1;for(int j = 1; j <= n; j++)if(nearvex[j] != -1 && mi > dis[j])mi = dis[j], pos = j;if(pos != -1){sum += mi;use[pos][nearvex[pos]] = use[nearvex[pos]][pos] = 1; //标记生成树中所用的边nearvex[pos] = -1;for(int j = head[pos]; j != -1; j = edge[j].next)if(nearvex[edge[j].v] != -1 && dis[edge[j].v] > edge[j].w){dis[edge[j].v] = edge[j].w;nearvex[edge[j].v] = pos;}}}
}
void getMax(int v, int fa, int w) //该函数用于更新新的生成树中点到park点的最大边
{nearvex[v] = fa;Edge t(v, fa, w);if(mx[fa] > t) mx[v] = mx[fa];else mx[v] = t;for(int i = head[v]; i != -1; i = edge[i].next)if(use[v][edge[i].v] && edge[i].v != fa) getMax(edge[i].v, v, edge[i].w); //必须是生成树中的边并且不是回边才往下搜
}
void GetMdegreeMST()
{vis[1] = 1;for(int i = 2; i <= n; i++) //求连通块if(!vis[i]){blocks++;dfs(i);}nearvex[1] = -1;for(int i = 1; i <= blocks; i++) prim(i);for(int i = 1; i <= n; i++) link[i] = INF;for(int i = head[1]; i != -1; i = edge[i].next)  //生成一棵m度的生成树if(link[belong[edge[i].v]] > edge[i].w){link[belong[edge[i].v]] = edge[i].w;point[belong[edge[i].v]] = edge[i].v;}for(int i = 1; i <= blocks; i++) //将park点与每个连通块中与其最近的点相连,并且标记边{sum += link[i];use[1][point[i]] = use[point[i]][1] = 1;}
}
void slove()
{int degree = blocks;getMax(1, 0, 0); //首先从park点出发求一遍最大边while(degree < k) //尝试迭代 k - degree次{int maxval = 0, pos = 0, w;for(int i = head[1]; i != -1; i = edge[i].next) //用于找到差值最大的点if(!use[1][edge[i].v] && mx[edge[i].v].w - edge[i].w > maxval){maxval = mx[edge[i].v].w - edge[i].w, pos = edge[i].v;w = edge[i].w;}if(!pos) break;sum -= maxval;//更新答案degree++;use[mx[pos].u][mx[pos].v] = use[mx[pos].v][mx[pos].u] = 0;//将最大边删除use[1][pos] = use[pos][1] = 1;getMax(pos, 1, w);//更新最大边}
}
int main()
{char s1[55], s2[55];int w;scanf("%d", &m);init();mp["Park"] = 1;for(int i = 0; i < m; i++){scanf("%s%s%d", s1, s2, &w);insert(getId(s1), getId(s2), w);insert(getId(s2), getId(s1), w);}scanf("%d", &k);GetMdegreeMST();slove();printf("Total miles driven: %d\n", sum);return 0;
}