当前位置: 代码迷 >> 综合 >> POJ 3181 Dollar Dayz 简单DP
  详细解决方案

POJ 3181 Dollar Dayz 简单DP

热度:96   发布时间:2024-01-13 17:28:45.0

这DP虽然简单

但是思考一下还是挺好的

题意是

1,2,3,4....k 用加法凑成N

每个数可取不限个数


令dp[i][j] 表示前i种数凑成j的方案数

然后dp[i][j] = dp[i - 1][j] + dp[i - 1][j - i] + dp[i - 1][j - 2 * i]........dp[i - 1][j - k * i]

这样子

然后代码如下,由于结果要爆long long ,所以用两个long long 数存高位和低位

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#define MAXN 111111
#define INF 1000000007
using namespace std;
pair<long long, long long> dp[111][1111];
long long mod = 10000000000000000LL;
int n, m;
int main()
{scanf("%d%d", &n, &m);dp[0][0].second = 1;dp[0][0].first = 0;for(int i = 1; i <= m; i++){for(int j = 0; j <= n; j++)for(int k = j; k >= 0; k -= i){dp[i][j].first += dp[i - 1][k].first;dp[i][j].second += dp[i - 1][k].second;if(dp[i][j].second >= mod){dp[i][j].first += dp[i][j].second / mod;dp[i][j].second %= mod;}}}if(dp[m][n].first > 0)printf("%I64d%I64d\n", dp[m][n].first, dp[m][n].second);else printf("%I64d\n", dp[m][n].second);return 0;
}


然后就是优化一下

dp[i][j] = dp[i - 1][j] + dp[i - 1][j - i] + dp[i - 1][j - 2 * i]........dp[i - 1][j - k * i]

其实可以发现

dp[i][j - k * i] 与dp[i][j - (k - 1)i] 之间是可以转移的

无非是多用了一个i而已

那么优化成了dp[i][j] = dp[i - 1][j] + dp[i][j - i]

dp[i - 1][j] 代表的是前i-1种数凑成j的方案数

dp[i][j - i]代表的是是用了前i种数凑成j - i的方案数

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#define MAXN 111111
#define INF 1000000007
using namespace std;
pair<long long, long long> dp[111][1111];
long long mod = 10000000000000000LL;
int n, m;
int main()
{scanf("%d%d", &n, &m);dp[0][0].second = 1;dp[0][0].first = 0;for(int i = 1; i <= m; i++){for(int j = 0; j <= n; j++){dp[i][j] = dp[i - 1][j];if(j - i < 0) continue;dp[i][j].first += dp[i][j - i].first ;dp[i][j].second += dp[i][j - i].second;if(dp[i][j].second >= mod){dp[i][j].first += dp[i][j].second / mod;dp[i][j].second %= mod;}}}if(dp[m][n].first > 0)printf("%I64d%I64d\n", dp[m][n].first, dp[m][n].second);else printf("%I64d\n", dp[m][n].second);return 0;
}


然后还能优化的就是空间了

观察转移方程

dp[i][j] = dp[i - 1][j] + dp[i][j - i]

发现只跟i和i-1有关系

并且和i - 1有关系得时候跟j没关系

也就是可以用一个一维的状态转移方程就行了

dp[j] = dp[j] + dp[j - i]

其中dp[i - 1][j]实际上在i - 1 循环后已经隐含的转移到了dp[i][j]中了

也就是dp[j]

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#define MAXN 111111
#define INF 1000000007
using namespace std;
pair<long long, long long> dp[1111];
long long mod = 10000000000000000LL;
int n, m;
int main()
{scanf("%d%d", &n, &m);dp[0].second = 1;dp[0].first = 0;for(int i = 1; i <= m; i++){for(int j = 1; j <= n; j++){if(j - i < 0) continue;dp[j].first += dp[j - i].first ;dp[j].second += dp[j - i].second;if(dp[j].second >= mod){dp[j].first += dp[j].second / mod;dp[j].second %= mod;}}}if(dp[n].first > 0)printf("%I64d%I64d\n", dp[n].first, dp[n].second);else printf("%I64d\n", dp[n].second);return 0;
}