注意到我们并不需要知道总部到底建在哪,只需要求出至少删掉的点数就可以了。
因此可以二分答案,删掉的一定是一段连续的点,于是总共有 O(n) 种删法,每种删法对应一个半平面。判断交是否为空集即可。
因为得到的这些直线是有序的,并不需要每次额外排序,复杂度可以做到 O(nlogn) 。
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=200010;
const double eps=1e-8;
int cmp(double x)
{if (x>eps) return 1;if (fabs(x)<=eps) return 0;return -1;
}
struct Vector
{double x,y;Vector operator + (const Vector &v) const{return (Vector){x+v.x,y+v.y};}Vector operator - (const Vector &v) const{return (Vector){x-v.x,y-v.y};}Vector operator * (const double &k) const{return (Vector){x*k,y*k};}double ang() const{return atan2(y,x);}
}a[maxn],p[maxn];
typedef Vector Point;
double dot(Vector v,Vector u)
{return v.x*u.x+v.y*u.y;
}
double cross(Vector v,Vector u)
{return v.x*u.y-v.y*u.x;
}
struct Line
{Point p;Vector v;bool operator < (const Line &l) const{return cmp(v.ang()-l.v.ang())==-1;}
}f[maxn],t[maxn],que[maxn];
bool onleft(Point p,Line l)
{return cmp(cross(l.v,p-l.p))==1;
}
Point intersection(Line l1,Line l2)
{Vector v=l1.p-l2.p;double t=cross(l2.v,v)/cross(l1.v,l2.v);return l1.p+l1.v*t;
}
int n;
int ok(int k)
{int hd,tl,x;for (int i=1;i<=n;i++) t[i]=(Line){a[i+k+1],a[i]-a[i+k+1]};for (int i=n+1;i<=2*n;i++) t[i]=t[i-n];x=n+1;for (int i=n+2;i<=2*n;i++)if (t[i]<t[x]) x=i;for (int i=1;i<=n;i++) f[i]=t[x-i+1];que[hd=tl=1]=f[1];for (int i=2;i<=n;i++){while (hd<tl&&!onleft(p[tl-1],f[i])) tl--;while (hd<tl&&!onleft(p[hd],f[i])) hd++;if (!(que[tl]<f[i])&&!(f[i]<que[tl])){if (!onleft(p[tl-1],f[i])) que[tl]=f[i];}else que[++tl]=f[i];if (hd<tl) p[tl-1]=intersection(que[tl-1],que[tl]);}while (hd<tl&&!onleft(p[tl-1],que[hd])) tl--;return tl-hd<=1;
}
void solve()
{int l,r,mid;for (int i=1;i<=n;i++) scanf("%lf%lf",&a[i].x,&a[i].y);for (int i=n+1;i<=2*n+1;i++) a[i]=a[i-n];l=1,r=n;while (l<r){mid=(l+r)/2;if (ok(mid)) r=mid;else l=mid+1;}printf("%d\n",l);
}
int main()
{//freopen("b.in","r",stdin);while (scanf("%d",&n)==1) solve();
}