转自:http://www.cnblogs.com/372465774y/archive/2012/10/22/2733977.html
Happy 2004
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 673 Accepted Submission(s): 481
Problem Description
Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your job is to determine S modulo 29 (the rest of the division of S by 29).
Take X = 1 for an example. The positive integer divisors of 2004^1 are 1, 2, 3, 4, 6, 12, 167, 334, 501, 668, 1002 and 2004. Therefore S = 4704 and S modulo 29 is equal to 6.
Take X = 1 for an example. The positive integer divisors of 2004^1 are 1, 2, 3, 4, 6, 12, 167, 334, 501, 668, 1002 and 2004. Therefore S = 4704 and S modulo 29 is equal to 6.
Input
The input consists of several test cases. Each test case contains a line with the integer X (1 <= X <= 10000000). A test case of X = 0 indicates the end of input, and should not be processed.
Output
For each test case, in a separate line, please output the result of S modulo 29.
Sample Input
1
10000
0
Sample Output
6
10
Source
ACM暑期集训队练习赛(六)
Recommend
lcy
求约数的和 首先 约束和函数是积性函数(就是如果m,n互质,则 f(mn)=f(m)f(n))还有约数个数函数也是积性函数 这2个比较好证明 直接带入就可以 S(x)代表x的约数和 S(20)=S(4)*S(5) 如果p是素数 S(p^n)=1+p+p^2+...p^n=(p^(n+1)-1)/(p-1); 所以本题 S(2004^x)=(2^(2*x+1)-1)(3^(x+1)-1)/2*(167^(x+1)-1)/166而又同余性质 : 若 a=b(mod m) 则 a^k=b^k (mod m): 所以 167可以用 22代替,(对29 同余) 对于 a^k*b^h*...%m的题目 直接二进制快速运算 这里还有个 a^k/d % m 这就相当于 a^k*d-1%m d-1 是 d的模m逆 就是 dd-1=1 mod m ...1 这样的话 a^k/b=x mod m ...2由1,2根据同余性质 a^k*d-1=x mod m 所以本题就Ok了
#include <iostream>
#include <map>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
using namespace std;
int Mod(int a,int b)
{int t;for(t=1;b>0;b>>=1,a=(a*a)%29)if(b&1) t=(t*a)%29;return t;
}
int main()
{int n;int a,b,c;while(scanf("%d",&n),n){a=(Mod(2,2*n+1)-1);b=(Mod(3,n+1)-1)*15; 15是2的mod 29逆c=(Mod(22,n+1)-1)*18;18是 21的mod 29逆printf("%d\n",a*b*c%29);}return 0;
}
另外参考:
乘法逆元,
http://blog.csdn.net/yeguxin/article/details/46669831
http://blog.sina.com.cn/s/blog_79b832820100xx20.html
http://blog.csdn.net/luyuncheng/article/details/8017016