Inter-process Communication
进程间通信
Overview
Chromium has a multi-process architecture which means that we have a lot of processes communicating with each other. Our main inter-process communication primitive is the named pipe. A named pipe is allocated for each renderer process for communication with the browser process. The pipes are used in asynchronous mode to ensure that neither end is blocked waiting for the other.
总览
Chromium有一个多进程的架构,这意味着我们有许多进程间通信.我们主要使用命名管道来做进程间通信.每一个渲染进程都创建一个命名管道,用来和浏览器主进程通信.这些管理都是异步模式的,用来保证它们不会阻塞在对其它管道的等待上.
IPC in the browser
Within the browser, communication with the renderers is done in a separate I/O thread. Messages to and from the views then have to be proxied over to the main thread using a ChannelProxy. The advantage of this scheme is that resource requests (for web pages, etc.), which are the most common and performance critical messages, can be handled entirely on the I/O thread and not block the user interface. These are done through the use of a ChannelProxy::MessageFilter which is inserted into the channel by the RenderProcessHost. This filter runs in the I/O thread, intercepts resource request messages, and forwards them directly to the resource dispatcher host. See Multi-process Resource Loading for more information on resource loading.
浏览器进程中的IPC
在浏览器进程中,与渲染进程的通信是在一个单独的IO线程中完成的[译注:这里的IO线程是用来做通信,而不是读写磁盘的].从视图中发送或者是接收的消息需要使用一个ChannelProxy来代理.这种机制的好处就是,资源请求(如网页),是最常见也是与性能息息相关的消息,可以完全在IO线程中处理而不影响用户界面.通过使用ChannelProxy::messageFilter可以做到这一点.它被RenderProcessHost插入到一个通道中.这个filter在IO线程中运行,拦截资源请求消息,然后把消息发给ResourceDispather宿主.(参见Multi-process Resource Loading获取关于资源加载的更多信息).
IPC in the renderer
Each renderer also has a thread that manages communication (in this case, the main thread), with the rendering and most processing happening on another thread (see the diagram in multi-process architecture). Most messages are sent from the browser to the WebKit thread through the main renderer thread and vice-versa. This extra thread is to support synchronous renderer-to-browser messages (see "Synchronous messages" below).
渲染进程中的IPC
每一个渲染进程同样也有一个线程来管理通信(在主线程中),主要处理渲染和大部分在其它线程上做的处理(能见multi-process architecture文章中的图).浏览器主进程通过渲染进程的主线程发送大部分消息到WebKit线程中,或者正好相反.这个额外的线程用来支持异步的renderer-to-browser消息(见下面的"异步消息").
Messages
Types of messages
We have two primary types of messages: "routed" and "control." Routed messages are specific to a page, and will be routed to the view representing that page using the identifier for that view. For example, messages telling the view to paint, or notifications to display a context menu are routed messages.
消息
消息类型
我们有两种最根本的消息类型:"routed"和"control".Routed消息用于一个网页,使用一个ID连接到响应这个网页的视图上.举个例子,消息告诉视图要绘制屏幕,或者是提示要显示一个上下文菜单,这就是routed消息.
Control messages are not specific to a given view and will be handled by the RenderProcess (renderer) or the RenderProcessHost (browser). For example, requests for resources or to modify the clipboard are not view-specific so are control messages.
Control消息不指定到一个视图上,被RenderProcess(渲染进程)或者是RenderProcessHost(浏览器主进程)处理.例如,请求资源或者是对剪切簿做操作就是视图无关的,也就是Control消息.
Independent of the message type is whether the message is sent from the browser to the renderer, or from the renderer to the browser. Messages sent from the browser to the renderer are called View messages because they are being sent to the RenderView. Messages sent from the renderer to the browser are called ViewHost messages because they are being sent to the RenderViewHost. You will notice the messages defined in render_messages_internal.h are separated into these two categories.
与消息类型无关的是,消息如何从浏览器主进程发送到渲染进程,或者是从渲染进程发送到浏览器主进程.从浏览器主进程发送到渲染进程的消息被称为View消息,因为它们被发送到RenderView. 从渲染进程发送到浏览器主进程的消息被称为ViewHost消息,因为它们被发送到RenderViewHost。你会看到render_messages_internal.h中定义的消息被分成这两种。
Plugins also have separate processes. Like the render messages, there are PluginProcess messages (sent from the browser to the plugin process) and PluginProcessHost messages (sent from the plugin process to the browser). These messages are all defined in plugin_messages_internal.h. The automation messages (for controlling the browser from the UI tests) are done in a similar manner.
插件同样有单独的进程。与渲染进程消息类似,同样也有PluginProcess消息(从主浏览器进程发送到插件进程)和PluginProcessHost消息(从插件进程到浏览器主进程)。这些消息都定义在plugin_messages_internal.h头文件中。自动消息(UI测试中用来控制浏览器)的收发也是一样的。
Declaring messages
Special macros are used to declare messages. The messages sent between the renderer and the browser are all declared in render_messages_internal.h. There are two sections, one for "View" messages sent to the renderer, and one for "ViewHost" messages sent to the browser.
To declare a message from the renderer to the browser (a "ViewHost" message) that is specific to a view ("routed") that contains a URL and an integer as an argument, write:
声明一个消息
声明消息需要使用特别的宏。浏览器主进程和渲染进程间的消息都在plugin_messages_internal.h中声明。它们分成两部分,一种叫"View",发往渲染进程,另一种叫"ViewHost",发往浏览器主进程。
声明一个从渲染进程发送到浏览器主进程的消息(或者是"ViewHost"消息),消息是与一个视图相关的("routed"),包含了一个URL和一个整数,写法如下:
IPC_MESSAGE_ROUTED2(ViewHostMsg_MyMessage, GURL, int)
To declare a control message from the browser to the renderer (a "View" message) that is not specific to a view ("control") that contains no parameters, write:
声明一个从浏览器主进程发送到渲染进程的coltrol消息(或者是"View"消息),消息是与福星无关的,不包含参数,写法如下:
IPC_MESSAGE_CONTROL0(ViewMsg_MyMessage)
Pickling values
Parameters are serialized and de-serialized to message bodies using the ParamTraits template. Specializations of this template are provided for most common types in ipc_message_utils.h. If you define your own types, you will also have to define your own ParamTraits specialization for it.
使用ParamTraits模型将参数序列化和反序列化到消息主体。提供类型来特化这个模板,常见的类型位于ipc_message_utils.h。如果你定义了自己的类型,你也需要定义自己的ParamTraits特化。
Sometimes, a message has too many values to be reasonably put in a message. In this case, we define a separate structure to hold the values. For example, for the ViewMsg_Navigate message, the ViewMsg_Navigate_Params structure is defined in render_messages.h. That file also defines the ParamTraits specializations for the structures.
有时候,一个消息有过的参数要放入消息中。在这种情况下,我们定义了一个单独的结构来保存这些值。举个例子,对ViewMsg_Navigate消息来说,render_messages.h头文件中定义了ViewMsg_Navigate_Params 结构。这个头文件同样定义了对这个结构的ParamTraits特化。
Sending messages
You send messages through "channels" (see below). In the browser, the RenderProcessHost contains the channel used to send messages from the UI thread of the browser to the renderer. The RenderWidgetHost (base class for RenderViewHost) provides a Send function that is used for convenience.
发送消息
通过"channels"发送消息(见下文)。在浏览器中,RenderProcessHost 包含用来发送来自浏览器UI线程的消息的通道(channel),这些消息发往渲染进程。RenderWidgetHost(RenderViewHost的基类)提供一个Send函数简化操作。
Messages are sent by pointer and will be deleted by the IPC layer after they are dispatched. Therefore, once you can find the appropriate Send function, just call it with a new message:
消息用指针的形式发送,在它们派发后被IPC层删除。因此,当你找到了合适的的Send函数,只要用一个新消息调用它就可以了。
Send(new ViewMsg_StopFinding(routing_id_));
Notice that you must specify the routing ID in order for the message to be routed to the correct View/ViewHost on the receiving end. Both the RenderWidgetHost (base class for RenderViewHost) and the RenderWidget (base class for RenderView) have routing_id_ members that you can use.
要注意的是,你必须指定一个routing ID,用来使消息能够被路由[译注:或者关联]到接收端正确的View/ViewHost。RenderWidgetHost(RenderViewHost的基类)和RenderWidget(RenderView的基类)都包含routing_id_ 成员,你可以使用它们来做routing ID。
Handling messages
Messages are handled by implementing the IPC::Channel::Listener interface, the most important function on which is OnMessageReceived. We have a variety of macros to simplify message handling in this function, which can best be illustrated by example:
处理消息
实现IPC::Channel::Listener接口来处理消息,最重要的函数是OnMessageReceived。我们有多种宏来简化这个函数中的消息处理,举个例子是最好不过的了:
MyClass::OnMessageReceived(const IPC::Message& message) {
IPC_BEGIN_MESSAGE_MAP(MyClass, message)
// Will call OnMyMessage with the message. The parameters of the message will be unpacked for you.
IPC_MESSAGE_HANDLER(ViewHostMsg_MyMessage, OnMyMessage)
...
IPC_MESSAGE_UNHANDLED_ERROR() // This will throw an exception for unhandled messages.
IPC_END_MESSAGE_MAP()
}
// This function will be called with the parameters extracted from the ViewHostMsg_MyMessage message.
MyClass::OnMyMessage(const GURL& url, int something) {
...
}
You can also use IPC_DEFINE_MESSAGE_MAP to implement the function definition for you as well. In this case, do not specify a message variable name, it will declare a OnMessageReceived function on the given class and implement its guts.
你也可以使用IPC_DEFINE_MESSAGE_MAP来实现函数的定义。在这种情况下,不需要指定消息变量名,它会在指定的类上声明一个OnMessageReceived 函数,实现函数内容。
Other macros:
其它宏:
IPC_MESSAGE_FORWARD: This is the same as IPC_MESSAGE_HANDLER but you can specify your own class to send the message to, instead of sending it to the current class.
IPC_MESSAGE_FORWARD(ViewHostMsg_MyMessage, some_object_pointer, SomeObject::OnMyMessage)
IPC_MESSAGE_HANDLER_GENERIC: This allows you to write your own code, but you have to unpack the parameters from the message yourself:
IPC_MESSAGE_HANDLER_GENERIC(ViewHostMsg_MyMessage, printf("Hello, world, I got the message."))
Security considerations
You must be very careful when unpacking messages in the browser. Since the renderer is sandboxed, one of the easiest ways to get out of the sandbox is to take advantage of insecure message unpacking. All parameters must be carefully validated and never trusted. Be particularly careful about signedness errors.
安全考虑
在浏览器中解包消息时你必须十分小心。因为渲染进程使用了沙箱技术,脱离沙箱的最简单的方法是利用不安全的消息解包。所有的参数必须小心地验证并且不被信任。注意一下无符号错误。
Channels
IPC::Channel (defined in chrome/common/ipc_channel.h) defines the methods for communicating across pipes. IPC::SyncChannel provides additional capabilities for synchronously waiting for responses to some messages (the renderer processes use this as described below in the "Synchronous messages" section, but the browser process never does).
通道
IPC::Channel (定义在chrome/common/ipc_channel.h)定义了通过管道通信的成员函数。IPC::SyncChannel 提供了附加的同步等待某些消息回应的功能(渲染进程像在下面""Synchronous messages"描述的那样使用它,但是浏览器进程却没有)。
Channels are not thread safe. We often want to send messages using a channel on another thread. For example, when the UI thread wants to send a message, it must go through the I/O thread. For this, we use a IPC::ChanelProxy. It has a similar API as the regular channel object, but proxies messages to another thread for sending them, and proxies messages back to the original thread when receiving them. It allows your object (typically on the UI thread) to install a IPC::ChannelProxy::Listener on the channel thread (typically the I/O thread) to filter out some messages from getting proxied over. We use this for resource requests and other requests that can be handled directly on the I/O thread. RenderProcessHost installs a ResourceMessageFilter object that does this filtering.
通道不是线程安全的。我们经常想要使用通道发送消息到另一个线程。举个例子,当UI线程想要发送一个消息,它必须通过I/O线程[注:IO线程是用来通信的,读写磁盘要用file线程]。我们使用 IPC::ChanelProxy来做这个工作,它有和普通channel对象相似的API,但是代理发送到其它进程的消息,也代理当接收到消息时,将消息返回到原始发送的线程。它允许你的对象(在UI线程中)安装一个IPC::ChannelProxy::Listener在channel线程(在IO线程上)上来过滤一些消息。我们使用它来做资源请求或者是其它可以直接在IO线程上处理的请求。RenderProcessHost安装一个ResourceMessageFilter对象来做消息过滤。
Synchronous messages
Some messages should be synchronous from the renderer's perspective. This happens mostly when there is a WebKit call to us that is supposed to return something, but that we must do in the browser. Examples of this type of messages are spell-checking and getting the cookies for JavaScript. Synchronous browser-to-renderer IPC is disallowed to prevent blocking the user-interface on a potentially flaky renderer.
同步消息
从渲染进程的角度来看,有一些消息应该是同步的。这经常发生在,当WebKit调用希望返回一些东西时,但是这些东西我们需要在浏览器主进程中完成。例如这种消息是:拼写检查,为JavaScript获取cookies。同步的broser-to-render IPC不允许潜在的用户界面阻塞。
Danger: Do not handle any synchronous messages in the UI thread! You must handle them only in the I/O thread. Otherwise, the application might deadlock because plug-ins require synchronous painting from the UI thread, and these will be blocked when the renderer is waiting for synchronous messages from the browser.
危险性:不要在UI线程中处理任何同步消息!你必须在IO线程中处理它们。否则应用程序可能会死锁,因为插件请求同步绘制,当渲染进程在等待浏览器主进程的同步消息时,而这些请求将被阻塞。
Declaring synchronous messages
Synchronous messages are declared using the IPC_SYNC_MESSAGE_* macros. These macros have input and return parameters (non-synchronous messages lack the concept of return parameters). For a control function which takes two input parameters and returns one parameter, you would append 2_1 to the macro name to get:
声明同步消息
同步消息使用IPC_SYNC_MESSAGE_* 宏来声明。这些宏有输入和返回参数(异步消息没有返回参数的概念)。对于一个clntrol函数,它带有两个输入参数和一个返回参数,你需要添加2_1到宏名字上:
IPC_SYNC_MESSAGE_CONTROL2_1(SomeMessage, // Message name
GURL, //input_param1
int, //input_param2
std::string); //result
Likewise, you can also have messages that are routed to the view in which case you would replace "control" with "routed" to get IPC_SYNC_MESSAGE_ROUTED2_1. You can also have 0 input or return parameters. Having no return parameters is used when the renderer must wait for the browser to do something, but needs no results. We use this for certain printing and clipboard operations.
同样的,你可以使用关联到视图的消息,在这种情况下,你可以用"routed"替换"control"来得到IPC_SYNC_MESSAGE_ROUTED2_1。你可以拥有0个输入参数或者是输出参数。没有返回参数用于渲染进程必须等待浏览器进程做完某些事情,但是不需要结果。我们使用它来做某些打印和剪切簿操作。
Issuing synchronous messages
When the WebKit thread issues a synchronous IPC request, the request object (derived from IPC::SyncMessage) is dispatched to the main thread on the renderer through a IPC::SyncChannel object (the same one is also used to send all asynchronous messages). The SyncChannel will block the calling thread when it receives a synchronous message, and will only unblock it when the reply is received.
发出一个同步消息
当WebKit线程发出一个同步IPC请求,这个请求对象(继承自IPC::SyncMessage)通过IPC::SyncChannel 对象(用于发送所有的同步消息)发送到浏览进程的主线程中。SyncChannel将阻塞调用线程直到它接收到一个回应。
While the WebKit thread is waiting for the synchronous reply, the main thread is still receiving messages from the browser process. These messages will be added to the queue of the WebKit thread for processing when it wakes up. When the synchronous message reply is received, the thread will be un-blocked. Note that this means that the synchronous message reply can be processed out-of-order.
当WebKit线程在等待同步消息的回应时,主线程仍然在接收来自浏览器主进程的消息。这些消息被加入到WebKit线程的队列中,以便它唤醒时处理。当接收到同步消息的应答时,线程被解锁。这意味着同步消息应答可以被无序处理。
Synchronous messages are sent the same way normal messages are, with output parameters being given to the constructor. For example:
同步消息像普通消息一样被发送,没有输出参数指定给构造函数,例如。
const GURL input_param("http://www.google.com/");
std::string result;
RenderThread::current()->Send(new MyMessage(input_param, &result));
printf("The result is %s/n", result.c_str());
Handling synchronous messages
Synchronous messages and asynchronous messages use the same IPC_MESSAGE_HANDLER, etc. macros for dispatching the message. The handler function for the message will have the same signature as the message constructor, and the function will simply write the output to the output parameter. For the above message you would add
处理同步消息
同步消息和异步消息使用相同的IPC_MESSAGE_HANDLER,等等的宏。宏用来发送消息。这个用于处理消息的函数与消息创建者有着同样的特征,函数只是简单地把输入写到输入参数中。在上面的消息里你可能添加:
IPC_MESSAGE_HANDLER(MyMessage, OnMyMessage)
to the OnMessageReceived function, and write:
void RenderProcessHost::OnMyMessage(GURL input_param, std::string* result) {
*result = input_param.spec() + " is not available";
}
====================================================
感谢原作者的辛勤劳动!感谢!
官方原文:: http://www.chromium.org/developers/design-documents/inter-process-communication
本文ref :: http://hi.baidu.com/shihuap/blog/item/55f69ddfad74af144854034f.html
你可以自由传播此文章但请注明译者
huapingsmith@gmail.com