Sigmoid 交叉熵损失函数(Sigmoid Cross Entropy Loss)
官方: loss ,
输入:
形状: 得分 , 这个层使用 sigmoid 函数 映射到概率分布
形状: 标签
输出:
- 形状: 计算公式:
应用场景:
预测目标概率分布
Parameters
bottom |
input Blob vector (length 2)
- the scores , which this layer maps to probability predictions using the sigmoid function (see SigmoidLayer).
- the targets
|
top |
output Blob vector (length 1)
- the computed cross-entropy loss:
|
Computes the sigmoid cross-entropy loss error gradient w.r.t. the predictions.
Gradients cannot be computed with respect to the target inputs (bottom[1]), so this method ignores bottom[1] and requires !propagate_down[1], crashing if propagate_down[1] is set.
Parameters
-
top |
output Blob vector (length 1), providing the error gradient with respect to the outputs
- This Blob's diff will simply contain the loss_weight* , as is the coefficient of this layer's output in the overall Netloss ; hence . (*Assuming that this top Blob is not used as a bottom (input) by any other layer of the Net.)
|
propagate_down |
see Layer::Backward. propagate_down[1] must be false as gradient computation with respect to the targets is not implemented. |
bottom |
input Blob vector (length 2)
- the predictions ; Backward computes diff
- the labels – ignored as we can't compute their error gradients
|
- #include <algorithm>
- #include <cfloat>
- #include <vector>
-
- #include "caffe/layer.hpp"
- #include "caffe/util/math_functions.hpp"
- #include "caffe/vision_layers.hpp"
-
-
-
-
-
-
- namespace caffe {
-
- template <typename Dtype>
- void SigmoidCrossEntropyLossLayer<Dtype>::LayerSetUp(
- const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
- LossLayer<Dtype>::LayerSetUp(bottom, top);
- sigmoid_bottom_vec_.clear();
- sigmoid_bottom_vec_.push_back(bottom[0]);
- sigmoid_top_vec_.clear();
- sigmoid_top_vec_.push_back(sigmoid_output_.get());
- sigmoid_layer_->SetUp(sigmoid_bottom_vec_, sigmoid_top_vec_);
- }
-
- template <typename Dtype>
- void SigmoidCrossEntropyLossLayer<Dtype>::Reshape(
- const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
- LossLayer<Dtype>::Reshape(bottom, top);
- CHECK_EQ(bottom[0]->count(), bottom[1]->count()) <<
- "SIGMOID_CROSS_ENTROPY_LOSS layer inputs must have the same count.";
- sigmoid_layer_->Reshape(sigmoid_bottom_vec_, sigmoid_top_vec_);
- }
-
- template <typename Dtype>
- void SigmoidCrossEntropyLossLayer<Dtype>::Forward_cpu(
- const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
-
- sigmoid_bottom_vec_[0] = bottom[0];
- sigmoid_layer_->Forward(sigmoid_bottom_vec_, sigmoid_top_vec_);
-
- const int count = bottom[0]->count();
- const int num = bottom[0]->num();
-
- const Dtype* input_data = bottom[0]->cpu_data();
- const Dtype* target = bottom[1]->cpu_data();
- Dtype loss = 0;
- for (int i = 0; i < count; ++i) {
- loss -= input_data[i] * (target[i] - (input_data[i] >= 0)) -
- log(1 + exp(input_data[i] - 2 * input_data[i] * (input_data[i] >= 0)));
- }
- top[0]->mutable_cpu_data()[0] = loss / num;
- }
-
- template <typename Dtype>
- void SigmoidCrossEntropyLossLayer<Dtype>::Backward_cpu(
- const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down,
- const vector<Blob<Dtype>*>& bottom) {
- if (propagate_down[1]) {
- LOG(FATAL) << this->type()
- << " Layer cannot backpropagate to label inputs.";
- }
- if (propagate_down[0]) {
-
- const int count = bottom[0]->count();
- const int num = bottom[0]->num();
- const Dtype* sigmoid_output_data = sigmoid_output_->cpu_data();
- const Dtype* target = bottom[1]->cpu_data();
- Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
- caffe_sub(count, sigmoid_output_data, target, bottom_diff);
-
- const Dtype loss_weight = top[0]->cpu_diff()[0];
- caffe_scal(count, loss_weight / num, bottom_diff);
- }
- }
-
- #ifdef CPU_ONLY
- STUB_GPU_BACKWARD(SigmoidCrossEntropyLossLayer, Backward);
- #endif
-
- INSTANTIATE_CLASS(SigmoidCrossEntropyLossLayer);
- REGISTER_LAYER_CLASS(SigmoidCrossEntropyLoss);
-
- }