题意:有一个长度为n的数组,每次能够交换相邻俩数的位置,问能否在 n ? ( n ? 1 ) 2 ? 1 \frac{n*(n-1)}{2}-1 2n?(n?1)??1次操作中使得数组非递减
题解:只有当数组严格递减的时候,操作次数是 n ? ( n ? 1 ) 2 \frac{n*(n-1)}{2} 2n?(n?1)?,故判断数组是否严格递减即可
#include<bits/stdc++.h>#pragma GCC optimize(2)
#define rep(i,a,n) for (int i=a;i<=n;i++)//i为循环变量,a为初始值,n为界限值,递增
#define per(i,a,n) for (int i=a;i>=n;i--)//i为循环变量, a为初始值,n为界限值,递减。using namespace std;
#define IOS ios_base::sync_with_stdio(0); cin.tie(0);cout.tie(0)
#define ll long long
#define ull unsigned long long
#define ld long double
const int INF = 0x3f3f3f3f;
const ll LINF = 1ll<<60;
const int mod=1e9+7;ll read()//快读
{
ll w = 1, s = 0;char ch = getchar();while (ch < '0' || ch>'9') {
if (ch == '-') w = -1; ch = getchar(); }while (ch >= '0' && ch <= '9') {
s = s * 10 + ch - '0'; ch = getchar(); }return s * w;
}void solve(){
int n,a[50010];cin>>n;rep(i,1,n) cin>>a[i];int f=0;rep(i,2,n){
if(a[i]-a[i-1]<0){
}else {
f=1;break;}}if(f) cout<<"YES"<<endl;else cout<<"NO"<<endl;
}int main(){
int _;cin>>_;while(_--){
solve();}return 0;
}