参数记录
param = {
'bst:max_depth':3, 'bst:subsample':0.5, 'bst:min_child_weight':1,'bst:eta':0.3, 'silent':1,'objective':'binary:logistic'}
param['nthread'] = 2
- 50 iter :auc:0.661716221418
param = {
'bst:max_depth':3, 'bst:subsample':0.8, 'bst:min_child_weight':1,'bst:eta':0.01, 'silent':1,'objective':'binary:logistic'}param['nthread'] = 2# banlance#param['scale_pos_weight'] = 1# aucparam['eval_metric'] = 'auc'
-
0.661716221418
# setting patametersparam = {
'bst:subsample':0.8, 'bst:min_child_weight':1, 'silent':1,'objective':'binary:logistic'}param['nthread'] = 2# banlance#param['scale_pos_weight'] = 1# aucparam['eval_metric'] = 'auc'# important featureparam['bst:max_depth'] = 6param['bst:min_child_weight'] = 1param['bst:eta'] = 0.1# cross validation#cross_validation(DATA_PATH+"processed",param)# num_round
-
[49] eval-auc:0.661716 train-auc:0.670260
# setting patametersparam = {
'bst:subsample':0.8, 'bst:min_child_weight':1, 'silent':1,'objective':'binary:logistic'}param['nthread'] = 2# banlance#param['scale_pos_weight'] = 1# aucparam['eval_metric'] = 'auc'# important featureparam['bst:max_depth'] = 10param['bst:min_child_weight'] = 1param['bst:eta'] = 0.3# cross validation#cross_validation(DATA_PATH+"processed",param)# num_roundnum_round = 50
- 增加label
[Dimension]
idfa_names=id,city,street,system_info,version,dpi,tag1,tag2,tag3,tag4,tag5,tag6,tag7
imei_names=id,androidid,mac,city,street,system_info,version,dpi,tag1,tag2,tag3,tag4,tag5,tag6,tag7[Parameter]
extention=1
processed_name=processed_extention.data
model_name=0001.model
nthread=3
max_depth=20
min_child_weight=1
eta=0.3
num_round=100
~
~
[94] eval-auc:0.660827 train-auc:0.679268
[95] eval-auc:0.660816 train-auc:0.679359
[96] eval-auc:0.660762 train-auc:0.679443
[97] eval-auc:0.660748 train-auc:0.679526
[98] eval-auc:0.660743 train-auc:0.679559
[99] eval-auc:0.660754 train-auc:0.679658feature code
208 2011117 166
223 2011301 97
230 2011308 92
19 1010301 91
203 2011112 83
222 20113 76
99 10305 74
156 20107 73
152 2010601 69
244 2011411 68
5。linear 无正则化
[95] eval-auc:0.623535 train-auc:0.623284
[96] eval-auc:0.623539 train-auc:0.623282
[97] eval-auc:0.623535 train-auc:0.623281
[98] eval-auc:0.623536 train-auc:0.623280
[99] eval-auc:0.623534 train-auc:0.623279