当前位置: 代码迷 >> 综合 >> 1136. A Delayed Palindrome (20) 大数模拟
  详细解决方案

1136. A Delayed Palindrome (20) 大数模拟

热度:64   发布时间:2024-01-06 15:51:52.0

1136. A Delayed Palindrome (20)

时间限制
400 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

Consider a positive integer N written in standard notation with k+1 digits ai as ak...a1a0 with 0 <= ai < 10 for all i and ak> 0. Then N is palindromic if and only if ai = ak-i for all i. Zero is written 0 and is also palindromic by definition.

Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. Such number is called a delayed palindrome. (Quoted from https://en.wikipedia.org/wiki/Palindromic_number)

Given any positive integer, you are supposed to find its paired palindromic number.

Input Specification:

Each input file contains one test case which gives a positive integer no more than 1000 digits.

Output Specification:

For each test case, print line by line the process of finding the palindromic number. The format of each line is the following:

A + B = C

where A is the original number, B is the reversed A, and C is their sum. A starts being the input number, and this process ends until C becomes a palindromic number -- in this case we print in the last line "C is a palindromic number."; or if a palindromic number cannot be found in 10 iterations, print "Not found in 10 iterations." instead.

Sample Input 1:
97152
Sample Output 1:
97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.
Sample Input 2:
196
Sample Output 2:
196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.


题意:给一个不超过一千位的整数,把他与他的镜像数字相加,直到和为一个对称的数字为止。加十次如果还不是对称的数字也退出

思路:一千位的话直接用字符串读入记为a,每次循环开始检查a是否左右对称,然后fc函数里先求出他的镜像数字b,因为a和b是左右相反的,所以直接从左往右加到ans里面就可以,jin用来标记是否进位,最后需要再检查一下最前面是否多了一位,也就是加完之后jin是否为1。此时ans是反相的,倒过来复制给a就好,同时刚好可以单个字符输出


#include<cstdio>
#include<cstring>using namespace std;char a[3000],b[3000],ans[3000];bool isans(){int n=strlen(a);int i;bool f=true;for(i=0;i*i<=n;i++){if(a[i]!=a[n-1-i]){f=false;break;}}return f;
}void fc(){int n=strlen(a);int i,j;for(i=0;i<n;i++){b[i]=a[n-1-i];}b[i]='\0';printf("%s + %s = ",a,b);int jin=0,t;for(j=0;j<n;j++){t=a[j]-'0'+b[j]-'0'+jin;if(t>=10){jin=1;t=t%10;}else{jin=0;}ans[j]=t+'0';}if(jin==1){ans[j]='1';j++;}ans[j]='\0';n=strlen(ans);for(i=0;i<n;i++){printf("%c",ans[n-1-i]);a[i]=ans[n-1-i];}a[i]='\0';printf("\n");
}int main(){int i=0;scanf("%s",a);for(i=0;i<10;i++){if(isans()){break;}fc();}if(i<10){printf("%s is a palindromic number.",a);}else{printf("Not found in 10 iterations.");}return 0;
}



  相关解决方案