1142. Maximal Clique (25)
A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. A maximal clique is a clique that cannot be extended by including one more adjacent vertex. (Quoted from https://en.wikipedia.org/wiki/Clique_(graph_theory))
Now it is your job to judge if a given subset of vertices can form a maximal clique.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers Nv (<= 200), the number of vertices in the graph, and Ne, the number of undirected edges. Then Ne lines follow, each gives a pair of vertices of an edge. The vertices are numbered from 1 to Nv.
After the graph, there is another positive integer M (<= 100). Then M lines of query follow, each first gives a positive number K (<= Nv), then followed by a sequence of K distinct vertices. All the numbers in a line are separated by a space.
Output Specification:
For each of the M queries, print in a line "Yes" if the given subset of vertices can form a maximal clique; or if it is a clique but not a maximal clique, print "Not Maximal"; or if it is not a clique at all, print "Not a Clique".
Sample Input:8 10 5 6 7 8 6 4 3 6 4 5 2 3 8 2 2 7 5 3 3 4 6 4 5 4 3 6 3 2 8 7 2 2 3 1 1 3 4 3 6 3 3 2 1Sample Output:
Yes Yes Yes Yes Not Maximal Not a Clique
给出一个图和一组顶点,如果这些点在图中两两之间都直接相连,则输出Yes或者Not Maximal,进一步如果图中还有其他点可以与这组每个顶点两两相连,则输出Not Maximal,否则输出Yes。
输入的时候检查组内之间点的连接情况。之后检查图中其他点的情况。数据不大,暴力一点一个一个检查就可以了
#include <cstdio>
#include <set>
#include <algorithm>using namespace std;int Nv, Ne, M, K;
int mp[201][201];
int vis[501];int checkk(int now, set<int>&s1) {for (auto it = s1.begin(); it != s1.end(); it++) {if (mp[now][*it] == 0) {printf("Not a Clique\n");return 0;}}return 1;
}int main() {int a, b;scanf("%d %d", &Nv, &Ne);for (int i = 0; i < Ne; i++) {scanf("%d %d", &a, &b);mp[a][b] = mp[b][a] = 1;mp[a][a] = mp[b][b] = 1;}scanf("%d", &M);for (int i = 0; i < M; i++) {scanf("%d", &K);fill(vis, vis + 501, 0);set<int>s1;int t;int f = 1;for (int j = 0; j < K; j++) {scanf("%d", &t);if (f) {vis[t] = 1;f = checkk(t, s1);s1.insert(t);}}if (f) {int f3 = 1;for (int j = 1; j <= Nv; j++) {if (vis[j] == 0) {int f2 = 1;for (auto it = s1.begin(); it != s1.end(); it++) {if (mp[j][*it] == 0) {f2 = 0;break;}}if (f2) {printf("Not Maximal\n");f3 = 0;break;}}}if (f3)printf("Yes\n");}}return 0;
}