因为我们要变动最小,所以对在原计划中的边要有一些特殊照顾,使得最优匹配时,尽量优先使用原计划的边,这样变化才能是最小的且不会影响原匹配。
根据这个思想,我们可以把每条边的权值扩大k倍,k要大于n。然后对原计划的边都+1。精华全在这里。我们来详细说明一下。
全部边都扩大了k倍,而且k比n大,这样,我们求出的最优匹配就是k倍的最大权值,只要除以k就可以得到最大权值。实现原计划的边加1,这样,在每次选择边时,这些变就 有了优势,就会优先选择这些边。假如原计划的h条边被选入了最优匹配中,这样,最优权值就是k倍的最大权值+k(原计划的每条边都+1)。但是k大于n的用意何在呢?我们发现假如原计划的边全部在匹配中,只会增加n,又n<k,所以除以k后不会影响最优匹配的最大权值之和,然后我们对k取余,就正好得到加入的原计划的边的个数。这时,我们只需要用总点数-加入的原计划的点数,就可以求得最小变动数了。
思路果然巧妙,既然自己想不出来,就见一个记住一个吧。积少成多。
代码:
#include<stdio.h>
#include<string.h>
#define MAX 55
int map[MAX][MAX],match[MAX],m,n;
int sx[MAX],sy[MAX],lx[MAX],ly[MAX];
int Match(int u)
{
}
void KM_Match()
{
}
int main()
{