当前位置: 代码迷 >> 综合 >> 泛函分析2——Normed Linear Spaces
  详细解决方案

泛函分析2——Normed Linear Spaces

热度:99   发布时间:2023-12-27 10:48:58.0

文章目录

  • Preface
  • FUNCTIONAL ANALYSIS NOTES
    • 2 Normed Linear Spaces
      • 2.1 Definition
        • Examples
        • Notation
        • Equivalent Norms
          • Definiton
          • example
      • 2.2 Open and Closed Sets
        • Definition
        • Theorem
      • 2.3 Quotient Norm and Quotient Map
      • 2.4 Completeness of Normed Linear Spaces
        • Definition
          • converge of normed linear space sequence
          • Cauchy sequence of normed linear space
        • Lemma
        • Proposition
        • Completeness
      • 2.5 Series in Normed Linear Spaces
        • Definition
        • Theorem
      • 2.6 Bounded, Totally Bounded, and Compact Subsets of a Normed Linear Space
        • Definition
        • Proposition
        • Theorem
        • Remark
        • Corollary

Preface

参考摘录于FUNCTIONAL ANALYSIS NOTES——Mr. Andrew Pinchuck

FUNCTIONAL ANALYSIS NOTES

2 Normed Linear Spaces

2.1 Definition

A norm on a linear space XXX is a real-valued function ∥?∥:X→R\|\cdot\|: X \rightarrow \mathbb{R}?:XR which satisfies the following properties:
For all x,y∈Xx, y \in Xx,yX and λ∈F\lambda \in \mathbb{F}λF
N1. ∥x∥≥0\|x\| \geq 0x0;
N2. ∥x∥=0?x=0\|x\|=0 \Longleftrightarrow x=0x=0?x=0
N3. ∥λx∥=∣λ∣∥x∥\|\lambda x\|=|\lambda|\|x\|λx=λx
N4. ∥x+y∥≤∥x∥+∥y∥\|x+y\| \leq\|x\|+\|y\|x+yx+y (Triangle Inequality).
A normed linear space is a pair (X,∥?∥),(X,\|\cdot\|),(X,?), where XXX is a linear space and ∥?∥\|\cdot\|? a norm on X.X .X. The number ∥x∥\|x\|x is called the norm or length of xxx

Unless there is some danger of confusion, we shall identify the normed linear space (X,∥?∥)(X,\|\cdot\|)(X,?) with the underlying linear space XXX.

Examples

[1] Let X=FX=\mathbb{F}X=F. For each x∈Xx \in XxX, define ∥x∥=∣x∣\|x\|=|x|x=x, then (X,∥?∥X,\|\cdot\|X,?)is a normed linear spaces

[2] Let nnn be a natural number and X=FnX=\mathbb{F}^{n}X=Fn. For each x=(x1,x2,…,xn)∈X,x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X,x=(x1?,x2?,,xn?)X, define
∥x∥p=(∑i=1n∣xi∣p)1p,for 1≤p<∞,and ∥x∥∞=max?1≤i≤n∣xi∣\begin{array}{l} \|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}, \text { for } 1 \leq p<\infty, \text { and } \\ \|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right| \end{array} xp?=(i=1n?xi?p)p1?, for 1p<, and x?=max1in?xi??
Then (X,∥?∥p)\left(X,\|\cdot\|_{p}\right)(X,?p?) and (X,∥?∥∞)\left(X,\|\cdot\|_{\infty}\right)(X,??) are normed linear spaces.

[3] Let X=B[a,b]X=\mathcal{B}[a, b]X=B[a,b] be the set of all bounded real-valued functions on [a,b][a, b][a,b]. For each x∈Xx \in XxX, define
∥x∥∞=sup?a≤t≤b∣x(t)∣\|x\|_{\infty}=\sup _{a \leq t \leq b}|x(t)| x?=atbsup?x(t)
Then (X,∥?∥∞)\left(X,\|\cdot\|_{\infty}\right)(X,??) is a normed linear space.

[4] Let X=C[a,b]={x:[a,b]→F∣xX=\mathcal{C}[a, b]=\{x:[a, b] \rightarrow \mathbb{F} \mid xX=C[a,b]={ x:[a,b]Fx is continuous }. For each x∈Xx \in XxX, define
$$
\begin{aligned}

|x|_{\infty} &=\sup _{a \leq t \leq b}|x(t)| \

|x|{2} &=\left(\int{a}{b}|x(t)|{2} d t\right)^{\frac{1}{2}}

\end{aligned}
$$
Then (X,∥?∥∞)\left(X,\|\cdot\|_{\infty}\right)(X,??) and (X,∥?∥2)\left(X,\|\cdot\|_{2}\right)(X,?2?) are normed linear spaces.

[5] Let X=?p,1≤p<∞X=\ell_{p}, 1 \leq p<\inftyX=?p?,1p<. For each x=(xi)1∞∈X,x=\left(x_{i}\right)_{1}^{\infty} \in X,x=(xi?)1?X, define
∥x∥p=(∑i∈N∣xi∣p)1p\|x\|_{p}=\left(\sum_{i \in \mathbb{N}}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}} xp?=(iN?xi?p)p1?
Then (X,∥?∥p)\left(X,\|\cdot\|_{p}\right)(X,?p?) is a normed linear space.

[6] Let X=?∞,cX=\ell_{\infty}, cX=??,c or c0.c_{0} .c0?. For each x=(xi)1∞∈X,x=\left(x_{i}\right)_{1}^{\infty} \in X,x=(xi?)1?X, define
∥x∥=∥x∥∞=sup?i∈N∣xi∣\|x\|=\|x\|_{\infty}=\sup _{i \in \mathbb{N}}\left|x_{i}\right| x=x?=iNsup?xi?
Then XXX is a normed linear space.

[7] Let X=L(Cn)X=\mathcal{L}\left(\mathbb{C}^{n}\right)X=L(Cn) be the linear space of all n×nn \times nn×n complex matrices. For A∈L(Cn),A \in \mathcal{L}\left(\mathbb{C}^{n}\right),AL(Cn), let τ(A)=∑i=1n(A)ii\tau(A)=\sum_{i=1}^{n}(A)_{i i}τ(A)=i=1n?(A)ii? be the trace of A.A .A. For A∈L(Cn),A \in \mathcal{L}\left(\mathbb{C}^{n}\right),AL(Cn), define
∥A∥2=τ(A?A)=∑i=1n∑k=1n(A)ki?(A)ki=∑i=1n∑k=1n∣(A)ki∣2\|A\|_{2}=\sqrt{\tau\left(A^{*} A\right)}=\sqrt{\sum_{i=1}^{n} \sum_{k=1}^{n} \overline{(A)_{k i}}(A)_{k i}}=\sqrt{\sum_{i=1}^{n} \sum_{k=1}^{n}\left|(A)_{k i}\right|^{2}} A2?=τ(A?A) ?=i=1n?k=1n?(A)ki??(A)ki? ?=i=1n?k=1n?(A)ki?2 ?
where A?A^{*}A? is the conjugate transpose of the matrix AAA.

Notation

Let aaa be an element of a normed linear space (X,∥?∥)(X,\|\cdot\|)(X,?) and r>0.r>0 .r>0.

B(a,r)={x∈X∣∥x?a∥<r}B(a, r)=\{x \in X \mid\|x-a\|<r\}B(a,r)={ xXx?a<r} (Open ball with centre aaa and radius r)r)r)

B[a,r]={x∈X∣∥x?a∥≤r}B[a, r]=\{x \in X \mid\|x-a\| \leq r\}B[a,r]={ xXx?ar} (Closed ball with centre aaa and radius r)r)r)

S(a,r)={x∈X∣∥x?a∥=r}S(a, r)=\{x \in X \mid\|x-a\|=r\}S(a,r)={ xXx?a=r} (Sphere with centre aaa and radius r)r)r)

Equivalent Norms

Definiton

Let ∥?∥\|\cdot\|? and ∥?∥0\|\cdot\|_{0}?0? be two different norms defined on the same linear space X.X .X. We say that ∥?∥\|\cdot\|? is equivalent to ∥?∥0\|\cdot\|_{0}?0? if there are positive numbers α\alphaα and β\betaβ such that
α∥x∥≤∥x∥0≤β∥x∥,for all x∈X\alpha\|x\| \leq\|x\|_{0} \leq \beta\|x\|, \text { for all } x \in X αxx0?βx, for all xX

example

all norms on a finite-dimensional normed linear space are equivalent.

2.2 Open and Closed Sets

Definition

[1] A subset SSS of a normed linear space (X,∥?∥)(X,\|\cdot\|)(X,?) is open if for each s∈Ss \in SsS there is an ?>0\epsilon>0?>0 such that B(s,?)?SB(s, \epsilon) \subset SB(s,?)?S

[2] A subset FFF of a normed linear space (X,∥?∥)(X,\|\cdot\|)(X,?) is closed if its complement X\FX \backslash FX\F is open.

[3] Let SSS be a subset of a normed linear space (X,∥?∥).(X,\|\cdot\|) .(X,?). We define the closure of S,S,S, denoted by Sˉ,\bar{S},Sˉ, to be the intersection of all closed sets containing SSS

It is easy to show that SSS is closed if and only if S=SˉS=\bar{S}S=Sˉ.

[4] metric on a set XXX is a real-valued function d:X×X→Rd: X \times X \rightarrow \mathbb{R}d:X×XR which satisfies the following properties: For all x,y,z∈Xx, y, z \in Xx,y,zX,
M1. d(x,y)≥0d(x, y) \geq 0d(x,y)0
M2. d(x,y)=0?x=yd(x, y)=0 \Longleftrightarrow x=yd(x,y)=0?x=y
M3. d(x,y)=d(y,x)d(x, y)=d(y, x)d(x,y)=d(y,x)
M4. d(x,z)≤d(x,y)+d(y,z)d(x, z) \leq d(x, y)+d(y, z)d(x,z)d(x,y)+d(y,z)

Theorem

(a) If (X,∥?∥)(X,\|\cdot\|)(X,?) is a normed linear space, then
d(x,y)=∥x?y∥d(x, y)=\|x-y\| d(x,y)=x?y
defines a metric on X.X .X. Such a metric ddd is said to be induced or generated by the norm ∥?∥.\|\cdot\| .?. Thus, every normed linear space is a metric space, and unless otherwise specified, we shall henceforth regard any normed linear space as a metric space with respect to the metric induced by its norm.
(b) the property of metric d If ddd is a metric on a linear space XXX satisfying the properties: For all x,y,z∈Xx, y, z \in Xx,y,zX and for all λ∈F\lambda \in \mathbb{F}λF,
(i) d(x,y)=d(x+z,y+z)(Translation Invariance) d(x, y)=d(x+z, y+z) \quad \text { (Translation Invariance) }d(x,y)=d(x+z,y+z) (Translation Invariance) 

? (ii) d(λx,λy)=∣λ∣d(x,y)d(\lambda x, \lambda y)=|\lambda| d(x, y) \quadd(λx,λy)=λd(x,y) (Absolute Homogeneity),
then
∥x∥=d(x,0)\|x\|=d(x, 0) x=d(x,0)
defines a norm on XXX.

2.3 Quotient Norm and Quotient Map

[1] Let MMM be a closed linear subspace of a normed linear space XXX over F\mathbb{F}F. The quotient space X/MX / MX/M is a normed linear space with respect to the norm(Quotient Norm)
∥[x]∥:=inf?y∈[x]∥y∥=inf?m∈M∥x+m∥=inf?m∈M∥x?m∥=d(x,M),where [x]∈X/M\|[x]\|:=\inf _{y \in[x]}\|y\|=\inf _{m \in M}\|x+m\|=\inf _{m \in M}\|x-m\|=d(x, M), \text { where }[x] \in X / M [x]:=y[x]inf?y=mMinf?x+m=mMinf?x?m=d(x,M), where [x]X/M

inf?m∈M∥x?m∥=d(x,M)\inf _{m \in M}\|x-m\|=d(x, M)infmM?x?m=d(x,M),这个我的理解是,x到m的范数最小,也就是x到M的距离,类比点到直线的距离。

[2] Let MMM be a closed subspace of the normed linear space XXX. The mapping QMQ_{M}QM? from X→X/MX \rightarrow X / MXX/M defined by
QM(x)=x+M,x∈XQ_{M}(x)=x+M, \quad x \in X QM?(x)=x+M,xX
is called the quotient map (or natural embedding) of XXX onto X/MX / MX/M.

2.4 Completeness of Normed Linear Spaces

Definition

Let (xn)n=1∞\left(x_{n}\right)_{n=1}^{\infty}(xn?)n=1? be a sequence in a normed linear space (X,∥?∥)(X,\|\cdot\|)(X,?).

converge of normed linear space sequence

(a) (xn)n=1∞\left(x_{n}\right)_{n=1}^{\infty}(xn?)n=1? is said to converge to xxx if given ?>0\epsilon>0?>0 there exists a natural number N=N(?)N=N(\epsilon)N=N(?) such that
∥xn?x∥<?for all n≥N\left\|x_{n}-x\right\|<\epsilon \text { for all } n \geq N xn??x<? for all nN
Equivalently, (xn)n=1∞\left(x_{n}\right)_{n=1}^{\infty}(xn?)n=1? converges to xxx if
lim?n→∞∥xn?x∥=0\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|=0 nlim?xn??x=0
If this is the case, we shall write
xn→xor lim?n→∞xn=xx_{n} \rightarrow x \text { or } \lim _{n \rightarrow \infty} x_{n}=x xn?x or nlim?xn?=x
Convergence in the norm is called norm convergence or strong convergence.

Cauchy sequence of normed linear space

(b) (xn)n=1∞\left(x_{n}\right)_{n=1}^{\infty}(xn?)n=1? is called a Cauchy sequence if given ?>0\epsilon>0?>0 there exists a natural number N=N(?)N=N(\epsilon)N=N(?) such that
∥xn?xm∥<?for all n,m≥N\left\|x_{n}-x_{m}\right\|<\epsilon \text { for all } n, m \geq N xn??xm?<? for all n,mN
Equivalently, (xn)\left(x_{n}\right)(xn?) is Cauchy if
lim?n,m→∞∥xn?xm∥=0\lim _{n, m \rightarrow \infty}\left\|x_{n}-x_{m}\right\|=0 n,mlim?xn??xm?=0

Cauchy sequence,在序列号趋于无穷大的时候,它的值就趋于稳定了。

Lemma

  1. Let CCC be a closed set in a normed linear space (X,∥?∥)(X,\|\cdot\|)(X,?) over F,\mathbb{F},F, and let (xn)\left(x_{n}\right)(xn?) be a sequence contained in CCC such that lim?n→∞xn=x∈X.\lim _{n \rightarrow \infty} x_{n}=x \in X .limn?xn?=xX. Then x∈Cx \in CxC

    赋范空间中的闭合子集中的一个序列,如果收敛,则极限值一定在这个闭合子集中。

  2. Let XXX be a normed linear space and AAA a nonempty subset of X.X .X.
    [1]∣d(x,A)?d(y,A)∣≤∥x?y∥[1]|d(x, A)-d(y, A)| \leq\|x-y\|[1]d(x,A)?d(y,A)x?y for all x,y∈Xx, y \in Xx,yX
    [2]∣∥x∥?∥y∥∣≤∥x?y∥[2]|\|x\|-\|y\|| \leq\|x-y\|[2]x?yx?y for all x,y∈Xx, y \in Xx,yX
    [3] If xn→x,x_{n} \rightarrow x,xn?x, then ∥xn∥→∥x∥\left\|x_{n}\right\| \rightarrow\|x\|xn?x
    [4] If xn→xx_{n} \rightarrow xxn?x and yn→y,y_{n} \rightarrow y,yn?y, then xn+yn→x+yx_{n}+y_{n} \rightarrow x+yxn?+yn?x+y
    [5] If xn→xx_{n} \rightarrow xxn?x and αn→α,\alpha_{n} \rightarrow \alpha,αn?α, then αnxn→αx\alpha_{n} x_{n} \rightarrow \alpha xαn?xn?αx
    [6] The closure of a linear subspace in XXX is again a linear subspace;
    [7] Every Cauchy sequence is bounded;
    [8] Every convergent sequence is a Cauchy sequence.

Proposition

Let (X,∥?∥)(X,\|\cdot\|)(X,?) be a normed linear space over F\mathbb{F}F. A Cauchy sequence in XXX which has a convergent subsequence is convergent.

就是说Cauchy sequence 如果有一个收敛的子序列,那么Cauchy sequence也是收敛的

Completeness

[1] A metric space (X,d)(X, d)(X,d) is said to be complete if every Cauchy sequence in XXX converges in XXX.

[2] A normed linear space that is complete with respect to the metric induced by the norm is called a Banach space.

就是说:Banach space是一个metric由norm给出的赋范空间

[3] Theorem Let (X,∥?∥)(X,\|\cdot\|)(X,?) be a Banach space and let MMM be a linear subspace of X.X .X. Then MMM is complete if and only if the MMM is closed in XXX.

[4] The classical sequence space ?p\ell_{p}?p? is complete.

2.5 Series in Normed Linear Spaces

赋范空间中的级数

Definition

[1] Let (xn)\left(x_{n}\right)(xn?) be a sequence in a normed linear space (X,∥?∥).(X,\|\cdot\|) .(X,?). To this sequence we associate another sequence (sn)\left(s_{n}\right)(sn?) of partial sums, where sn=∑k=1nxks_{n}=\sum_{k=1}^{n} x_{k}sn?=k=1n?xk?

[2] Definition Let (xn)\left(x_{n}\right)(xn?) be a sequence in a normed linear space (X,∥?∥).(X,\|\cdot\|) .(X,?). If the sequence (sn)\left(s_{n}\right)(sn?) of partial sums converges to s,s,s, then we say that the series ∑k=1∞xk\sum_{k=1}^{\infty} x_{k}k=1?xk? converges and that its sum is s.s .s. In this case we write ∑k=1∞xk=s\sum_{k=1}^{\infty} x_{k}=sk=1?xk?=s. The series ∑k=1∞xk\sum_{k=1}^{\infty} x_{k}k=1?xk? is said to be absolutely convergent if ∑k=1∞∥xk∥<∞.\sum_{k=1}^{\infty}\left\|x_{k}\right\|<\infty .k=1?xk?<.

用部分和的形式定义赋范空间中的级数收敛

Theorem

[1] A normed linear space (X,∥?∥)(X,\|\cdot\|)(X,?) is a Banach space if and only if every absolutely convergent series in XXX is convergent.

[2] Let MMM be a closed linear subspace of a Banach space X.X .X. Then the quotient space X/MX / MX/M is a Banach space when equipped with the quotient norm.

2.6 Bounded, Totally Bounded, and Compact Subsets of a Normed Linear Space

Definition

[1] A subset AAA of a normed linear space (X,∥?∥)(X,\|\cdot\|)(X,?) is bounded if A?B[x,r]A \subset B[x, r]A?B[x,r] for some x∈Xx \in XxX and r>0r>0r>0
It is clear that AAA is bounded if and only if there is a C>0C>0C>0 such that ∥a∥≤C\|a\| \leq CaC for all a∈Aa \in AaA.

[2] Let AAA be a subset of a normed linear space (X,∥?∥)(X,\|\cdot\|)(X,?) and ?>0.\epsilon>0 .?>0. A subset A??XA_{\epsilon} \subset XA???X is called an ?\epsilon? -net for AAA if for each x∈Ax \in AxA there is an element y∈A?y \in A_{\epsilon}yA?? such that ∥x?y∥<?.\|x-y\|<\epsilon .x?y<?. Simply put, A??XA_{\epsilon} \subset XA???X is an ?\epsilon? -net for AAA if each element of AAA is within an ?\epsilon? distance to some element of A?A_{\epsilon}A??

A?A_\epsilonA??表示这样一个集合,对于A中的每一个元素a你总能在A?A_\epsilonA??中找到对应的某个元素a?a_\epsilona??,使得它俩的distance在?\epsilon?内。

A subset AAA of a normed linear space (X,∥?∥)(X,\|\cdot\|)(X,?) is totally bounded (or precompact) if for any ?>0\epsilon>0?>0 there is a finite ?\epsilon? -net F??XF_{\epsilon} \subset XF???X for AAA. That is, there is a finite set F??XF_{\epsilon} \subset XF???X such that
A??x∈F?B(x,?)A \subset \bigcup_{x \in F_{\epsilon}} B(x, \epsilon) A?xF????B(x,?)

Proposition

[1] Every totally bounded subset of a normed linear space (X,∥?∥)(X,\|\cdot\|)(X,?) is bounded.

[2] A subset AAA of a normed linear space (X,∥?∥)(X,\|\cdot\|)(X,?) is totally bounded if and only if for any ?>0\epsilon>0?>0 there is a finite set F??AF_{\epsilon} \subset AF???A such that
A??x∈F?B(x,?)A \subset \bigcup_{x \in F_{\epsilon}} B(x, \epsilon) A?xF????B(x,?)
[3] A normed linear space (X,∥?∥)(X,\|\cdot\|)(X,?) is sequentially compact if every sequence in XXX has a convergent subsequence.

Theorem

[1] A subset KKK of a normed linear space (X,∥?∥)(X,\|\cdot\|)(X,?) is totally bounded if and only if every sequence in KKK has a Cauchy subsequence.

[2] A subset of a normed linear space is sequentially compact if and only if it is totally bounded and complete .

Remark

It can be shown that on a metric space, compactness and sequential compactness are equivalent. Thus, it follows, that on a normed linear space, we can use these terms interchangeably.

Corollary

[1] A subset of a Banach space is sequentially compact if and only if it is totally bounded and closed

[2] A sequentially compact subset of a normed linear space is closed and bounded.

[3] A closed subset F of a sequentially compact normed linear space (X;∥?∥)(X; \|\cdot\|)X;?is sequentially compact.

  相关解决方案