文章目录
- Preface
- FUNCTIONAL ANALYSIS NOTES
-
- 2 Normed Linear Spaces
-
- 2.1 Definition
-
- Examples
- Notation
- Equivalent Norms
-
- Definiton
- example
- 2.2 Open and Closed Sets
-
- Definition
- Theorem
- 2.3 Quotient Norm and Quotient Map
- 2.4 Completeness of Normed Linear Spaces
-
- Definition
-
- converge of normed linear space sequence
- Cauchy sequence of normed linear space
- Lemma
- Proposition
- Completeness
- 2.5 Series in Normed Linear Spaces
-
- Definition
- Theorem
- 2.6 Bounded, Totally Bounded, and Compact Subsets of a Normed Linear Space
-
- Definition
- Proposition
- Theorem
- Remark
- Corollary
Preface
参考摘录于FUNCTIONAL ANALYSIS NOTES——Mr. Andrew Pinchuck
FUNCTIONAL ANALYSIS NOTES
2 Normed Linear Spaces
2.1 Definition
A norm on a linear space XXX is a real-valued function ∥?∥:X→R\|\cdot\|: X \rightarrow \mathbb{R}∥?∥:X→R which satisfies the following properties:
For all x,y∈Xx, y \in Xx,y∈X and λ∈F\lambda \in \mathbb{F}λ∈F
N1. ∥x∥≥0\|x\| \geq 0∥x∥≥0;
N2. ∥x∥=0?x=0\|x\|=0 \Longleftrightarrow x=0∥x∥=0?x=0
N3. ∥λx∥=∣λ∣∥x∥\|\lambda x\|=|\lambda|\|x\|∥λx∥=∣λ∣∥x∥
N4. ∥x+y∥≤∥x∥+∥y∥\|x+y\| \leq\|x\|+\|y\|∥x+y∥≤∥x∥+∥y∥ (Triangle Inequality).
A normed linear space is a pair (X,∥?∥),(X,\|\cdot\|),(X,∥?∥), where XXX is a linear space and ∥?∥\|\cdot\|∥?∥ a norm on X.X .X. The number ∥x∥\|x\|∥x∥ is called the norm or length of xxx
Unless there is some danger of confusion, we shall identify the normed linear space (X,∥?∥)(X,\|\cdot\|)(X,∥?∥) with the underlying linear space XXX.
Examples
[1] Let X=FX=\mathbb{F}X=F. For each x∈Xx \in Xx∈X, define ∥x∥=∣x∣\|x\|=|x|∥x∥=∣x∣, then (X,∥?∥X,\|\cdot\|X,∥?∥)is a normed linear spaces
[2] Let nnn be a natural number and X=FnX=\mathbb{F}^{n}X=Fn. For each x=(x1,x2,…,xn)∈X,x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X,x=(x1?,x2?,…,xn?)∈X, define
∥x∥p=(∑i=1n∣xi∣p)1p,for 1≤p<∞,and ∥x∥∞=max?1≤i≤n∣xi∣\begin{array}{l} \|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}, \text { for } 1 \leq p<\infty, \text { and } \\ \|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right| \end{array} ∥x∥p?=(∑i=1n?∣xi?∣p)p1?, for 1≤p<∞, and ∥x∥∞?=max1≤i≤n?∣xi?∣?
Then (X,∥?∥p)\left(X,\|\cdot\|_{p}\right)(X,∥?∥p?) and (X,∥?∥∞)\left(X,\|\cdot\|_{\infty}\right)(X,∥?∥∞?) are normed linear spaces.
[3] Let X=B[a,b]X=\mathcal{B}[a, b]X=B[a,b] be the set of all bounded real-valued functions on [a,b][a, b][a,b]. For each x∈Xx \in Xx∈X, define
∥x∥∞=sup?a≤t≤b∣x(t)∣\|x\|_{\infty}=\sup _{a \leq t \leq b}|x(t)| ∥x∥∞?=a≤t≤bsup?∣x(t)∣
Then (X,∥?∥∞)\left(X,\|\cdot\|_{\infty}\right)(X,∥?∥∞?) is a normed linear space.
[4] Let X=C[a,b]={x:[a,b]→F∣xX=\mathcal{C}[a, b]=\{x:[a, b] \rightarrow \mathbb{F} \mid xX=C[a,b]={
x:[a,b]→F∣x is continuous }. For each x∈Xx \in Xx∈X, define
$$
\begin{aligned}
|x|_{\infty} &=\sup _{a \leq t \leq b}|x(t)| \
|x|{2} &=\left(\int{a}{b}|x(t)|{2} d t\right)^{\frac{1}{2}}
\end{aligned}
$$
Then (X,∥?∥∞)\left(X,\|\cdot\|_{\infty}\right)(X,∥?∥∞?) and (X,∥?∥2)\left(X,\|\cdot\|_{2}\right)(X,∥?∥2?) are normed linear spaces.
[5] Let X=?p,1≤p<∞X=\ell_{p}, 1 \leq p<\inftyX=?p?,1≤p<∞. For each x=(xi)1∞∈X,x=\left(x_{i}\right)_{1}^{\infty} \in X,x=(xi?)1∞?∈X, define
∥x∥p=(∑i∈N∣xi∣p)1p\|x\|_{p}=\left(\sum_{i \in \mathbb{N}}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}} ∥x∥p?=(i∈N∑?∣xi?∣p)p1?
Then (X,∥?∥p)\left(X,\|\cdot\|_{p}\right)(X,∥?∥p?) is a normed linear space.
[6] Let X=?∞,cX=\ell_{\infty}, cX=?∞?,c or c0.c_{0} .c0?. For each x=(xi)1∞∈X,x=\left(x_{i}\right)_{1}^{\infty} \in X,x=(xi?)1∞?∈X, define
∥x∥=∥x∥∞=sup?i∈N∣xi∣\|x\|=\|x\|_{\infty}=\sup _{i \in \mathbb{N}}\left|x_{i}\right| ∥x∥=∥x∥∞?=i∈Nsup?∣xi?∣
Then XXX is a normed linear space.
[7] Let X=L(Cn)X=\mathcal{L}\left(\mathbb{C}^{n}\right)X=L(Cn) be the linear space of all n×nn \times nn×n complex matrices. For A∈L(Cn),A \in \mathcal{L}\left(\mathbb{C}^{n}\right),A∈L(Cn), let τ(A)=∑i=1n(A)ii\tau(A)=\sum_{i=1}^{n}(A)_{i i}τ(A)=∑i=1n?(A)ii? be the trace of A.A .A. For A∈L(Cn),A \in \mathcal{L}\left(\mathbb{C}^{n}\right),A∈L(Cn), define
∥A∥2=τ(A?A)=∑i=1n∑k=1n(A)ki?(A)ki=∑i=1n∑k=1n∣(A)ki∣2\|A\|_{2}=\sqrt{\tau\left(A^{*} A\right)}=\sqrt{\sum_{i=1}^{n} \sum_{k=1}^{n} \overline{(A)_{k i}}(A)_{k i}}=\sqrt{\sum_{i=1}^{n} \sum_{k=1}^{n}\left|(A)_{k i}\right|^{2}} ∥A∥2?=τ(A?A)?=i=1∑n?k=1∑n?(A)ki??(A)ki??=i=1∑n?k=1∑n?∣(A)ki?∣2?
where A?A^{*}A? is the conjugate transpose of the matrix AAA.
Notation
Let aaa be an element of a normed linear space (X,∥?∥)(X,\|\cdot\|)(X,∥?∥) and r>0.r>0 .r>0.
B(a,r)={x∈X∣∥x?a∥<r}B(a, r)=\{x \in X \mid\|x-a\|<r\}B(a,r)={ x∈X∣∥x?a∥<r} (Open ball with centre aaa and radius r)r)r)
B[a,r]={x∈X∣∥x?a∥≤r}B[a, r]=\{x \in X \mid\|x-a\| \leq r\}B[a,r]={ x∈X∣∥x?a∥≤r} (Closed ball with centre aaa and radius r)r)r)
S(a,r)={x∈X∣∥x?a∥=r}S(a, r)=\{x \in X \mid\|x-a\|=r\}S(a,r)={ x∈X∣∥x?a∥=r} (Sphere with centre aaa and radius r)r)r)
Equivalent Norms
Definiton
Let ∥?∥\|\cdot\|∥?∥ and ∥?∥0\|\cdot\|_{0}∥?∥0? be two different norms defined on the same linear space X.X .X. We say that ∥?∥\|\cdot\|∥?∥ is equivalent to ∥?∥0\|\cdot\|_{0}∥?∥0? if there are positive numbers α\alphaα and β\betaβ such that
α∥x∥≤∥x∥0≤β∥x∥,for all x∈X\alpha\|x\| \leq\|x\|_{0} \leq \beta\|x\|, \text { for all } x \in X α∥x∥≤∥x∥0?≤β∥x∥, for all x∈X
example
all norms on a finite-dimensional normed linear space are equivalent.
2.2 Open and Closed Sets
Definition
[1] A subset SSS of a normed linear space (X,∥?∥)(X,\|\cdot\|)(X,∥?∥) is open if for each s∈Ss \in Ss∈S there is an ?>0\epsilon>0?>0 such that B(s,?)?SB(s, \epsilon) \subset SB(s,?)?S
[2] A subset FFF of a normed linear space (X,∥?∥)(X,\|\cdot\|)(X,∥?∥) is closed if its complement X\FX \backslash FX\F is open.
[3] Let SSS be a subset of a normed linear space (X,∥?∥).(X,\|\cdot\|) .(X,∥?∥). We define the closure of S,S,S, denoted by Sˉ,\bar{S},Sˉ, to be the intersection of all closed sets containing SSS
It is easy to show that SSS is closed if and only if S=SˉS=\bar{S}S=Sˉ.
[4] metric on a set XXX is a real-valued function d:X×X→Rd: X \times X \rightarrow \mathbb{R}d:X×X→R which satisfies the following properties: For all x,y,z∈Xx, y, z \in Xx,y,z∈X,
M1. d(x,y)≥0d(x, y) \geq 0d(x,y)≥0
M2. d(x,y)=0?x=yd(x, y)=0 \Longleftrightarrow x=yd(x,y)=0?x=y
M3. d(x,y)=d(y,x)d(x, y)=d(y, x)d(x,y)=d(y,x)
M4. d(x,z)≤d(x,y)+d(y,z)d(x, z) \leq d(x, y)+d(y, z)d(x,z)≤d(x,y)+d(y,z)
Theorem
(a) If (X,∥?∥)(X,\|\cdot\|)(X,∥?∥) is a normed linear space, then
d(x,y)=∥x?y∥d(x, y)=\|x-y\| d(x,y)=∥x?y∥
defines a metric on X.X .X. Such a metric ddd is said to be induced or generated by the norm ∥?∥.\|\cdot\| .∥?∥. Thus, every normed linear space is a metric space, and unless otherwise specified, we shall henceforth regard any normed linear space as a metric space with respect to the metric induced by its norm.
(b) the property of metric d If ddd is a metric on a linear space XXX satisfying the properties: For all x,y,z∈Xx, y, z \in Xx,y,z∈X and for all λ∈F\lambda \in \mathbb{F}λ∈F,
(i) d(x,y)=d(x+z,y+z)(Translation Invariance) d(x, y)=d(x+z, y+z) \quad \text { (Translation Invariance) }d(x,y)=d(x+z,y+z) (Translation Invariance)
? (ii) d(λx,λy)=∣λ∣d(x,y)d(\lambda x, \lambda y)=|\lambda| d(x, y) \quadd(λx,λy)=∣λ∣d(x,y) (Absolute Homogeneity),
then
∥x∥=d(x,0)\|x\|=d(x, 0) ∥x∥=d(x,0)
defines a norm on XXX.
2.3 Quotient Norm and Quotient Map
[1] Let MMM be a closed linear subspace of a normed linear space XXX over F\mathbb{F}F. The quotient space X/MX / MX/M is a normed linear space with respect to the norm(Quotient Norm)
∥[x]∥:=inf?y∈[x]∥y∥=inf?m∈M∥x+m∥=inf?m∈M∥x?m∥=d(x,M),where [x]∈X/M\|[x]\|:=\inf _{y \in[x]}\|y\|=\inf _{m \in M}\|x+m\|=\inf _{m \in M}\|x-m\|=d(x, M), \text { where }[x] \in X / M ∥[x]∥:=y∈[x]inf?∥y∥=m∈Minf?∥x+m∥=m∈Minf?∥x?m∥=d(x,M), where [x]∈X/M
inf?m∈M∥x?m∥=d(x,M)\inf _{m \in M}\|x-m\|=d(x, M)infm∈M?∥x?m∥=d(x,M),这个我的理解是,x到m的范数最小,也就是x到M的距离,类比点到直线的距离。
[2] Let MMM be a closed subspace of the normed linear space XXX. The mapping QMQ_{M}QM? from X→X/MX \rightarrow X / MX→X/M defined by
QM(x)=x+M,x∈XQ_{M}(x)=x+M, \quad x \in X QM?(x)=x+M,x∈X
is called the quotient map (or natural embedding) of XXX onto X/MX / MX/M.
2.4 Completeness of Normed Linear Spaces
Definition
Let (xn)n=1∞\left(x_{n}\right)_{n=1}^{\infty}(xn?)n=1∞? be a sequence in a normed linear space (X,∥?∥)(X,\|\cdot\|)(X,∥?∥).
converge of normed linear space sequence
(a) (xn)n=1∞\left(x_{n}\right)_{n=1}^{\infty}(xn?)n=1∞? is said to converge to xxx if given ?>0\epsilon>0?>0 there exists a natural number N=N(?)N=N(\epsilon)N=N(?) such that
∥xn?x∥<?for all n≥N\left\|x_{n}-x\right\|<\epsilon \text { for all } n \geq N ∥xn??x∥<? for all n≥N
Equivalently, (xn)n=1∞\left(x_{n}\right)_{n=1}^{\infty}(xn?)n=1∞? converges to xxx if
lim?n→∞∥xn?x∥=0\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|=0 n→∞lim?∥xn??x∥=0
If this is the case, we shall write
xn→xor lim?n→∞xn=xx_{n} \rightarrow x \text { or } \lim _{n \rightarrow \infty} x_{n}=x xn?→x or n→∞lim?xn?=x
Convergence in the norm is called norm convergence or strong convergence.
Cauchy sequence of normed linear space
(b) (xn)n=1∞\left(x_{n}\right)_{n=1}^{\infty}(xn?)n=1∞? is called a Cauchy sequence if given ?>0\epsilon>0?>0 there exists a natural number N=N(?)N=N(\epsilon)N=N(?) such that
∥xn?xm∥<?for all n,m≥N\left\|x_{n}-x_{m}\right\|<\epsilon \text { for all } n, m \geq N ∥xn??xm?∥<? for all n,m≥N
Equivalently, (xn)\left(x_{n}\right)(xn?) is Cauchy if
lim?n,m→∞∥xn?xm∥=0\lim _{n, m \rightarrow \infty}\left\|x_{n}-x_{m}\right\|=0 n,m→∞lim?∥xn??xm?∥=0
Cauchy sequence,在序列号趋于无穷大的时候,它的值就趋于稳定了。
Lemma
-
Let CCC be a closed set in a normed linear space (X,∥?∥)(X,\|\cdot\|)(X,∥?∥) over F,\mathbb{F},F, and let (xn)\left(x_{n}\right)(xn?) be a sequence contained in CCC such that lim?n→∞xn=x∈X.\lim _{n \rightarrow \infty} x_{n}=x \in X .limn→∞?xn?=x∈X. Then x∈Cx \in Cx∈C
赋范空间中的闭合子集中的一个序列,如果收敛,则极限值一定在这个闭合子集中。
-
Let XXX be a normed linear space and AAA a nonempty subset of X.X .X.
[1]∣d(x,A)?d(y,A)∣≤∥x?y∥[1]|d(x, A)-d(y, A)| \leq\|x-y\|[1]∣d(x,A)?d(y,A)∣≤∥x?y∥ for all x,y∈Xx, y \in Xx,y∈X
[2]∣∥x∥?∥y∥∣≤∥x?y∥[2]|\|x\|-\|y\|| \leq\|x-y\|[2]∣∥x∥?∥y∥∣≤∥x?y∥ for all x,y∈Xx, y \in Xx,y∈X
[3] If xn→x,x_{n} \rightarrow x,xn?→x, then ∥xn∥→∥x∥\left\|x_{n}\right\| \rightarrow\|x\|∥xn?∥→∥x∥
[4] If xn→xx_{n} \rightarrow xxn?→x and yn→y,y_{n} \rightarrow y,yn?→y, then xn+yn→x+yx_{n}+y_{n} \rightarrow x+yxn?+yn?→x+y
[5] If xn→xx_{n} \rightarrow xxn?→x and αn→α,\alpha_{n} \rightarrow \alpha,αn?→α, then αnxn→αx\alpha_{n} x_{n} \rightarrow \alpha xαn?xn?→αx
[6] The closure of a linear subspace in XXX is again a linear subspace;
[7] Every Cauchy sequence is bounded;
[8] Every convergent sequence is a Cauchy sequence.
Proposition
Let (X,∥?∥)(X,\|\cdot\|)(X,∥?∥) be a normed linear space over F\mathbb{F}F. A Cauchy sequence in XXX which has a convergent subsequence is convergent.
就是说Cauchy sequence 如果有一个收敛的子序列,那么Cauchy sequence也是收敛的
Completeness
[1] A metric space (X,d)(X, d)(X,d) is said to be complete if every Cauchy sequence in XXX converges in XXX.
[2] A normed linear space that is complete with respect to the metric induced by the norm is called a Banach space.
就是说:Banach space是一个metric由norm给出的赋范空间
[3] Theorem Let (X,∥?∥)(X,\|\cdot\|)(X,∥?∥) be a Banach space and let MMM be a linear subspace of X.X .X. Then MMM is complete if and only if the MMM is closed in XXX.
[4] The classical sequence space ?p\ell_{p}?p? is complete.
2.5 Series in Normed Linear Spaces
赋范空间中的级数
Definition
[1] Let (xn)\left(x_{n}\right)(xn?) be a sequence in a normed linear space (X,∥?∥).(X,\|\cdot\|) .(X,∥?∥). To this sequence we associate another sequence (sn)\left(s_{n}\right)(sn?) of partial sums, where sn=∑k=1nxks_{n}=\sum_{k=1}^{n} x_{k}sn?=∑k=1n?xk?
[2] Definition Let (xn)\left(x_{n}\right)(xn?) be a sequence in a normed linear space (X,∥?∥).(X,\|\cdot\|) .(X,∥?∥). If the sequence (sn)\left(s_{n}\right)(sn?) of partial sums converges to s,s,s, then we say that the series ∑k=1∞xk\sum_{k=1}^{\infty} x_{k}∑k=1∞?xk? converges and that its sum is s.s .s. In this case we write ∑k=1∞xk=s\sum_{k=1}^{\infty} x_{k}=s∑k=1∞?xk?=s. The series ∑k=1∞xk\sum_{k=1}^{\infty} x_{k}∑k=1∞?xk? is said to be absolutely convergent if ∑k=1∞∥xk∥<∞.\sum_{k=1}^{\infty}\left\|x_{k}\right\|<\infty .∑k=1∞?∥xk?∥<∞.
用部分和的形式定义赋范空间中的级数收敛
Theorem
[1] A normed linear space (X,∥?∥)(X,\|\cdot\|)(X,∥?∥) is a Banach space if and only if every absolutely convergent series in XXX is convergent.
[2] Let MMM be a closed linear subspace of a Banach space X.X .X. Then the quotient space X/MX / MX/M is a Banach space when equipped with the quotient norm.
2.6 Bounded, Totally Bounded, and Compact Subsets of a Normed Linear Space
Definition
[1] A subset AAA of a normed linear space (X,∥?∥)(X,\|\cdot\|)(X,∥?∥) is bounded if A?B[x,r]A \subset B[x, r]A?B[x,r] for some x∈Xx \in Xx∈X and r>0r>0r>0
It is clear that AAA is bounded if and only if there is a C>0C>0C>0 such that ∥a∥≤C\|a\| \leq C∥a∥≤C for all a∈Aa \in Aa∈A.
[2] Let AAA be a subset of a normed linear space (X,∥?∥)(X,\|\cdot\|)(X,∥?∥) and ?>0.\epsilon>0 .?>0. A subset A??XA_{\epsilon} \subset XA???X is called an ?\epsilon? -net for AAA if for each x∈Ax \in Ax∈A there is an element y∈A?y \in A_{\epsilon}y∈A?? such that ∥x?y∥<?.\|x-y\|<\epsilon .∥x?y∥<?. Simply put, A??XA_{\epsilon} \subset XA???X is an ?\epsilon? -net for AAA if each element of AAA is within an ?\epsilon? distance to some element of A?A_{\epsilon}A??
A?A_\epsilonA??表示这样一个集合,对于A中的每一个元素a你总能在A?A_\epsilonA??中找到对应的某个元素a?a_\epsilona??,使得它俩的distance在?\epsilon?内。
A subset AAA of a normed linear space (X,∥?∥)(X,\|\cdot\|)(X,∥?∥) is totally bounded (or precompact) if for any ?>0\epsilon>0?>0 there is a finite ?\epsilon? -net F??XF_{\epsilon} \subset XF???X for AAA. That is, there is a finite set F??XF_{\epsilon} \subset XF???X such that
A??x∈F?B(x,?)A \subset \bigcup_{x \in F_{\epsilon}} B(x, \epsilon) A?x∈F????B(x,?)
Proposition
[1] Every totally bounded subset of a normed linear space (X,∥?∥)(X,\|\cdot\|)(X,∥?∥) is bounded.
[2] A subset AAA of a normed linear space (X,∥?∥)(X,\|\cdot\|)(X,∥?∥) is totally bounded if and only if for any ?>0\epsilon>0?>0 there is a finite set F??AF_{\epsilon} \subset AF???A such that
A??x∈F?B(x,?)A \subset \bigcup_{x \in F_{\epsilon}} B(x, \epsilon) A?x∈F????B(x,?)
[3] A normed linear space (X,∥?∥)(X,\|\cdot\|)(X,∥?∥) is sequentially compact if every sequence in XXX has a convergent subsequence.
Theorem
[1] A subset KKK of a normed linear space (X,∥?∥)(X,\|\cdot\|)(X,∥?∥) is totally bounded if and only if every sequence in KKK has a Cauchy subsequence.
[2] A subset of a normed linear space is sequentially compact if and only if it is totally bounded and complete .
Remark
It can be shown that on a metric space, compactness and sequential compactness are equivalent. Thus, it follows, that on a normed linear space, we can use these terms interchangeably.
Corollary
[1] A subset of a Banach space is sequentially compact if and only if it is totally bounded and closed
[2] A sequentially compact subset of a normed linear space is closed and bounded.
[3] A closed subset F of a sequentially compact normed linear space (X;∥?∥)(X; \|\cdot\|)(X;∥?∥)is sequentially compact.