当前位置: 代码迷 >> 综合 >> POJ-1284-Primitive Roots
  详细解决方案

POJ-1284-Primitive Roots

热度:60   发布时间:2023-12-26 00:59:35.0

题目
Description

We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, …, p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Input

Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.
Output

For each p, print a single number that gives the number of primitive roots in a single line.
Sample Input

23
31
79
Sample Output

10
8
24

解决这题先得弄清楚原根的定义。。。
原根定义
设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根。(其中φ(m)表示m的欧拉函数)
假设一个数g是P的原根,那么g^i mod P的结果两两不同,且有 1< g< P, 0< i < P,归根到底就是g^(P-1) = 1 (mod P)当且仅当指数为P-1的时候成立.(这里P是素数).
简单来说,g^i mod p ≠ g^j mod p (p为素数)
其中i≠j且i, j介于1至(p-1)之间
则g为p的原根。
求原根目前的做法只能是从2开始枚举,然后暴力判断g^(P-1) = 1 (mod P)是否当且仅当指数为P-1的时候成立
而由于原根一般都不大,所以可以暴力得到.

#include <cstdio>
typedef long long ll;
ll oula(ll n)
{ll rea=n;for(int i = 2; i * i <= n; i ++){if(n%i==0){rea=rea-rea/i;don/=i;while(n%i==0);}}if(n>1)rea=rea-rea/n;return rea;
}
int main()
{ll n;while(scanf("%lld",&n)!=EOF){n--;printf("%lld\n",oula(n));}return 0;
}
  相关解决方案