当前位置: 代码迷 >> 综合 >> going deeper with convolution---googlenet
  详细解决方案

going deeper with convolution---googlenet

热度:93   发布时间:2023-12-22 16:26:49.0

22 layers

The main idea of the Inception architecture is based on finding out how an optimal local sparse structure in a convolutional vision network can be approximated and covered by readily available dense components..

inception结构的idea基于: 在convolutional vision network中局部稀疏的结构如何近似和cover readily available dense components.

-----------------------------------------------------------

uniformly 增加网络的深度(deep)和广度(width) cause major potential drawbacks:

1. a large number of parameters, prone to overfitting

2. dramatically increase use of computational resources


--------------------------------Inception,-----------------------------

1x1的卷积有什么作用


-多通道信息交互融合(eg.NIN)  feature map的线性组合

-降维和升维(googlenet), 减少参数数量

-在不改变feature map尺寸(无信息损失)下增加非线性(deeper),增加网络的表达能力 (NIN)


-------------------------------------------

Loss, 


loss = 0.3*loss1+ 0.3*loss2+loss3


--------------------------------------------------------------------

c = net.blobs['conv2/3x3'].data 
print c.shape 
sumxx = np.zeros((c.shape[2],c.shape[3])) 
for m in c[0]: std = np.std(m) ave = np.average(m) if std ==0 : sumxx += (m-ave)else: sumxx += (m-ave)/std
#print std
sumxx = (sumxx - np.min(sumxx))/ (np.max(sumxx) - np.min(sumxx)) 
plt.imshow(sumxx)

原图:


conv1其中的一个feature map   归一化


vonv1所有feature map 处理后相加后的图片  

# (x-average)/std -> 归一化(x'-min)/(max-min)  -> 所有feature map对应位置相加 -> 归一化


relu1 所有feature map的和



max pooling1


norm1

 

inception_3a/output


inception_4a/output


inception_5b/output



  相关解决方案