文章目录
-
-
-
-
- 1176:遍历
- 1175:打包
- 1174:最大连续子段和
- 1173:学生节
- 1170:阶乘测试
- 1169:区间覆盖问题
- 1168:最大流
- 1164:和谐宿舍
- 1163:网格贪吃蛇
-
-
-
1176:遍历
遍历
题意:
给定N个点的图,求经过指定M个点的路径,使路径最短
思路:
状压dp。
//无语住了。。。。找了好久bug以为是思路问题,最后发现是没有弄清楚M个点里面可以重复的。。
#include<bits/stdc++.h>
#define all(x) x.begin(),x.end()
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define pll pair<ll,ll>
using namespace std;
typedef long long ll;const double eps=1e-8;
const double PI=acos(-1.0);
const ll mod = 1e9+7;
const ll mx = 1e2 + 10;
const ll mx2 = 4e4 + 10;
const ll inf = 1<<30;ll N, M, d[mx][mx], dis[mx][mx];
ll id[mx];
bool b[mx];
ll dp[mx][mx2];
// 1<<15 == 32768void solve(){
scanf("%lld %lld", &N, &M);for(ll i = 1; i <= N; i++){
for(ll j = 1; j <= N; j++){
scanf("%lld", &d[i][j]);if(d[i][j] == 0 && i!=j)d[i][j] = inf;}}ll cM = 1;for (ll i = 1; i <= M; i++) {
scanf("%lld", &id[cM]);id[cM]++;if (b[id[cM]])continue;b[id[cM]] = true;cM++;}M = cM - 1;for(ll k = 1; k <= N; k++)for(ll i = 1; i <= N; i++)for(ll j = 1; j <= N; j++)d[i][j] = min(d[i][j],d[i][k]+d[k][j]);for(ll i = 1; i <= M; i++)for(ll j = 1; j <= M; j++)dis[i][j] = d[id[i]][id[j]]; for(ll i = 1; i <= M; i++)for(ll j = 0; j <= (1<<M)-1; j++)dp[i][j] = inf;for(ll i = 1; i <= M; i++)dp[i][0] = 0; for(ll i = 1; i < (1<<M); i++){
for(ll j = 1; j <= M; j++){
if((i>>(j-1))&1)continue;// j - 0//dp[j][i]for(ll k = 1; k <= M; k++){
if(!((i>>(k-1))&1))continue;//k - 1dp[j][i] = min(dp[j][i], dis[j][k]+dp[k][i-(1<<(k-1))]);}}}ll ans = inf;for(ll i = 1; i <= M; i++){
ll cv = (1<<M) - 1 - (1<<(i-1));ans = min(ans, dp[i][cv]);}printf("%lld\n", ans==inf?-1:ans);}int main(){
solve();return 0;
}
1175:打包
打包
题意:
N个礼物分为M份包裹,每份包裹的礼物的号都是连续的。求最小的(最大一份包裹的重量)。
思路:
二分答案。二分值为w,则从第一个礼物开始贪心地取当前份的包裹里的礼物直到重量超标,超标了就新建一份包裹,如果即使新建也装不下则当前w不合适。如果最后包裹数量超过M也不合适。
#include<bits/stdc++.h>
#define all(x) x.begin(),x.end()
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define pll pair<ll,ll>
using namespace std;
typedef long long ll;const double eps=1e-8;
const double PI=acos(-1.0);
const ll mod = 1e9+7;
const ll mx = 1e5 + 10;
ll N, M, d[mx];bool check(ll w){
ll c = 0, m = 1; for(ll i = 1; i <= N; i++){
c += d[i];if(c > w){
m++;c = d[i];if(c > w) return false;}} return m <= M;
}void solve(){
scanf("%lld %lld", &N, &M);for(ll i = 1; i <= N;i ++) scanf("%lld", &d[i]);ll small = 0, big = 1000*100000;while(small <= big){
ll mid = (small + big) >>1;if(check(mid)) big = mid-1LL;else small = mid+1LL;}printf("%lld\n", small);}
int main(){
solve();return 0;
}
1174:最大连续子段和
最大连续子段和
题目:
长度为N的数列求最大连续字段和
思路:
dp。注意特判所有值都是负数的情况。
#include<bits/stdc++.h>
#define all(x) x.begin(),x.end()
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define pll pair<ll,ll>
using namespace std;
typedef long long ll;const double eps=1e-8;
const double PI=acos(-1.0);
const ll mod = 1e9+7;
const ll mx = 1e5 + 10;
ll N, a[mx];void solve(){
scanf("%lld", &N);for(ll i = 1; i <= N; i++) scanf("%lld", &a[i]);bool negative = true;ll maxv = -100000 * 100000;for(ll i = 1; i <= N; i++){
if(a[i] >= 0) negative = false;maxv = max(maxv, a[i]);}if(negative){
printf("%lld\n", maxv);return;}ll ans = -100000 * 100000;ll cans = 0;for(ll i = 1; i <= N; i++){
cans += a[i];if(cans < 0) cans = 0;ans = max(ans, cans);}printf("%lld\n", ans);
}int main(){
solve();return 0;
}
1173:学生节
学生节
题意:
n个节目,T个询问。每次询问在第1个到第t[i]个节目中选择m个可以得到的最大的节目价值之和。
思路:
维护的是前t[i]个节目中最大的m个节目的价值之和。用优先队列维护m个最大值。遇到比当前优先队列里的最小值要大的v[i]的时候,就弹出这个最小值压入当前v[i],然后更新当前维护的价值。
坑点:忘了特判0的情况,会出现运行错误,找了好久泪目。
#include<bits/stdc++.h>
#define all(x) x.begin(),x.end()
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define pll pair<ll,ll>
using namespace std;
typedef long long ll;const double eps=1e-8;
const double PI=acos(-1.0);
const ll mod = 1e9+7;
const ll mx = 1e3 + 10;ll N, M, T;
ll v[mx], t[mx], ans[mx];
priority_queue<ll, vector<ll>, greater<ll> >q;
ll dp[mx][mx];
void solve(){
scanf("%lld %lld %lld", &N, &M, &T);for(ll i = 1; i <= N; i++) scanf("%lld", &v[i]);for(ll i = 1; i <= T; i++) scanf("%lld", &t[i]);if(N == 0LL || M == 0LL){
for(ll i = 1; i <= T; i++) printf("0\n");return;}for(ll i = 1; i <= N; i++){
if(v[i]<=0){
ans[i]=ans[i-1];continue;}if(q.size() < M){
ans[i]=ans[i-1]+v[i];q.push(v[i]); }else{
ll cv = q.top();if(v[i]>cv){
q.pop();q.push(v[i]);ans[i]=ans[i-1]-cv+v[i];}else{
ans[i]=ans[i-1];}}}for(ll i = 1; i <= T; i++){
printf("%lld\n", ans[t[i]]);}
}int main(){
solve();return 0;
}
1170:阶乘测试
阶乘测试 练习系统里的数据有问题 很难受
题意:略
思路:略
#include<bits/stdc++.h>
#define all(x) x.begin(),x.end()
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define pll pair<ll,ll>
using namespace std;
typedef long long ll;const double eps=1e-8;
const double PI=acos(-1.0);
const ll mod = 1e9+7;
const ll mx = 1e3 + 10;
ll n, m;
void solve(){
while(scanf("%lld %lld", &n, &m)!=EOF){
ll ans = 0, base = m;while(n>=m){
ans += n/m;m *= base;}printf("%lld\n", ans);}
}
int main(){
solve();return 0;
}
1169:区间覆盖问题
区间覆盖问题
题意:
区间[1,n],有m个 线段 区间。求至少需要几个区间才能覆盖区间[1,n]
思路:
贪心,对于每个区间[i,?]显然选择?最大的小区间,因此m个区间可以贪心为每个位置i对应一个小区间[i,?max]。
从位置1开始覆盖到它可以覆盖的最大值,并且这个过程中一直更新覆盖位置的?的最大值。到了位置1的可覆盖的最大值之后,下一个选择的区间的最大范围就是之前更新的记录值。如此一直更新到最后。
#include<bits/stdc++.h>
#define all(x) x.begin(),x.end()
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define pll pair<ll,ll>
using namespace std;
typedef long long ll;const double eps=1e-8;
const double PI=acos(-1.0);
const ll mod = 1e9+7;
const ll mx = 1e6 + 10;
const ll inf = 1<<30;ll n, m, d[mx];ll norm(ll x){
if(x <= 0) return 1;if(x > n) return n;return x;
}void solve(){
scanf("%lld %lld", &n, &m);for(ll i = 1LL; i <= m; i++){
ll x, y;scanf("%lld %lld", &x, &y);x = norm(x), y = norm(y);d[x]=max(d[x], y);} ll num=0, maxv = 0, aimv=1;//最远可以覆盖的范围 bool yes= true;for(ll i = 1; i < n & yes; i++){
maxv = max(maxv, d[i]);if(i == aimv){
aimv = maxv;num++;}if(aimv <= i){
yes = false;break;}}yes = yes & (maxv >= n); if(yes) printf("%lld\n", num);else printf("-1\n");
}int main(){
solve();return 0;
}
1168:最大流
最大流
让人怀疑智商的一道题。。求两者之和
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a, b;
int main(){
scanf("%lld %lld", &a, &b);printf("%lld\n", a+b); return 0;
}
1164:和谐宿舍
和谐宿舍
题意:
已知n列高度,第i列的高度为h[i]。现在要求取最多m块木板从左到右排成一排并且底边在同一底线上,然后覆盖所有的高度。
求面积最大的木块的面积的 最小值。
思路:
二分答案。
#include<bits/stdc++.h>
#define all(x) x.begin(),x.end()
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define pll pair<ll,ll>
using namespace std;
typedef long long ll;const double eps=1e-8;
const double PI=acos(-1.0);
const ll mod = 1e9+7;
const ll mx = 1e5+ 10;
const ll inf = 1<<30;ll n, m, h[mx];
bool check(ll x){
ll currm = 0;ll ch = 0, res = 0;ll i = 1;while(i <= n){
ch = h[i];if(ch > x) return false;res = x / ch;//可以覆盖res列 ll j = i, cres = 0; while(cres<res){
cres++; //目前是ch高度下的第cres列 j++;if(j > n)break;if(h[j]>ch){
//考虑抬高高度 ll nres = x/h[j];//如果抬高的最多列数 if(nres > cres){
//可以换 res = nres;ch = h[j];} else{
//下一列j覆盖不到了break;}}}i = j;//覆盖不到的那一列 currm++;}return currm <= m;
}void solve(){
scanf("%lld %lld", &n, &m);for(ll i = 1; i <= n; i++) scanf("%lld", &h[i]);ll zuo = 1, you = 100000LL * 10000LL;while(zuo <= you){
ll mid = (zuo + you)>>1;if(check(mid)) you = mid - 1;else zuo = mid + 1;}printf("%lld\n", zuo);
}int main(){
solve();return 0;
}
1163:网格贪吃蛇
网格贪吃蛇
题意:
m行n列,k个格子上有豆豆。蛇从(0,0)开始,每步只能往右走或者往上走,最后到达(m-1,n-1),求可以吃的最多的豆豆数。
思路:
普通的dp。但是由于数据范围过大k过小,需要离散化先。
#include<bits/stdc++.h>
#define all(x) x.begin(),x.end()
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define pll pair<ll,ll>
using namespace std;
typedef long long ll;const double eps=1e-8;
const double PI=acos(-1.0);
const ll mod = 1e9+7;
const ll mx = 1e3+ 10;
const ll inf = 1<<30;
ll n, m, k;
bool has[mx][mx];
ll dp[mx][mx];ll in1[mx], in2[mx];
map<ll,ll> id1, id2;
vector<ll>v1, v2;void solve(){
scanf("%lld %lld", &m, &n);//m行数 n列数 scanf("%lld", &k);v1.pb(0), v1.pb(n-1);//x坐标 [0,n-1]v2.pb(0), v2.pb(m-1);//y坐标 [0,m-1] for(ll i = 1; i <= k; i++){
scanf("%lld %lld", &in1[i], &in2[i]);v1.pb(in1[i]);v2.pb(in2[i]);}//离散化sort(all(v1));sort(all(v2));v1.erase(unique(all(v1)), v1.end());v2.erase(unique(all(v2)), v2.end());for(ll i = 0; i < v1.size();i ++)//x坐标 id1[v1[i]] = i+1;for(ll i = 0; i < v2.size(); i++)//y坐标 id2[v2[i]] = i+1; //数据 for(ll i = 1; i <= k; i++){
has[id2[in2[i]]][id1[in1[i]]] = true;} m = v2.size();//行 y坐标 n = v1.size();//列 x坐标 //DP for(ll i = 1; i <= m; i++){
//行y for(ll j = 1; j <= n; j++){
//列x dp[i][j] = max(dp[i-1][j], dp[i][j-1]);dp[i][j] += has[i][j]?1:0; }}printf("%lld\n", dp[m][n]);
}int main(){
solve();return 0;
}