求满足双调和方程定解问题
{ Δ 2 φ = ( ? 2 ? x 2 + ? 2 ? y 2 ) 2 φ = 0 , 0 < x < l ( 17 a ) ? 2 φ ? y 2 ∣ x = 0 = ? 2 φ ? y 2 ∣ x = l = 0 ( 17 b ) ? 2 φ ? y 2 ≠ 0 ( 17 c ) \begin{cases} \Delta^2\varphi=(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2})^2\varphi=0,\quad 0<x<l \quad (17a)\\ \frac{\partial^2 \varphi}{\partial y^2}|_{x=0}=\frac{\partial^2 \varphi}{\partial y^2}|_{x=l}=0 \quad (17b)\\ \frac{\partial^2 \varphi}{\partial y^2} \neq 0 \quad (17c) \end{cases} ??????Δ2φ=(?x2?2?+?y2?2?)2φ=0,0<x<l(17a)?y2?2φ?∣x=0?=?y2?2φ?∣x=l?=0(17b)?y2?2φ???=0(17c)?
的所有变量分离形状的解。
解:显然这个定解问题的解不唯一,且方程和定解条件都不同于可分离变量问题(1).
设 φ = X ( x ) Y ( y ) \varphi=X(x)Y(y) φ=X(x)Y(y),代入方程(17a)并除以 φ \varphi φ,得
X ( 4 ) X + 2 X ′ ′ T ′ ′ X Y + Y ( 4 ) Y = 0 (18) \frac{X^{(4)}}{X}+2\frac{X''T''}{XY}+\frac{Y^{(4)}}{Y}=0 \tag{18} XX(4)?+2XYX′′T′′?+YY(4)?=0(18)
将上式对y求导,得
2 X ′ ′ X ( Y ′ ′ Y ) ′ + ( Y ( 4 ) Y ) ′ = 0 2\frac{X''}{X}(\frac{Y''}{Y})'+(\frac{Y^{(4)}}{Y})'=0 2XX′′?(YY′′?)′+(YY(4)?)′=0
从而,可推得
X ′ ′ = ? λ X X ( 4 ) = ( ? λ X ) ′ ′ = λ 2 X X''=-\lambda X \\ X^{(4)}=(-\lambda X)''=\lambda^2 X X′′=?λXX(4)=(?λX)′′=λ2X
代入方程(18),便有 Y ( y ) Y(y) Y(y)满足的方程
Y ( 4 ) ? 2 λ Y ′ ′ + λ 2 Y = 0 Y^{(4)}-2\lambda Y''+\lambda^2Y=0 Y(4)?2λY′′+λ2Y=0
又将 φ = X ( x ) Y ( y ) \varphi=X(x)Y(y) φ=X(x)Y(y)代入定解条件(17b)式,(17c)式,得
? 2 φ ? y 2 ∣ x = 0 = X ( 0 ) Y ′ ′ ( y ) = 0 ? 2 φ ? y 2 ∣ x = l = X ( l ) Y ′ ′ ( y ) = 0 ? 2 φ ? y 2 = X ( x ) Y ′ ′ ( y ) ≠ 0 \frac{\partial^2\varphi}{\partial y^2}|_{x=0}=X(0)Y''(y)=0 \\ \frac{\partial^2\varphi}{\partial y^2}|_{x=l}=X(l)Y''(y)=0 \\ \frac{\partial^2\varphi}{\partial y^2}=X(x)Y''(y)\neq 0 ?y2?2φ?∣x=0?=X(0)Y′′(y)=0?y2?2φ?∣x=l?=X(l)Y′′(y)=0?y2?2φ?=X(x)Y′′(y)??=0
可知 Y ′ ′ ( y ) ≠ 0 Y''(y)\neq 0 Y′′(y)??=0,从而有
X ( 0 ) = X ( l ) = 0 X(0)=X(l)=0 X(0)=X(l)=0
解得
λ n = ( n π l ) 2 , X n ( x ) = s i n n π l x , n = 1 , 2 , ? \lambda_n=(\frac{n\pi}{l})^2, \quad X_n(x)=sin\frac{n\pi}{l}x,\quad n=1,2,\cdots λn?=(lnπ?)2,Xn?(x)=sinlnπ?x,n=1,2,?
代入 Y ( y ) Y(y) Y(y)满足的4阶常微分方程,其特征方程为
k 4 ? 2 ( n π l ) 2 k 2 + ( n π l ) 4 = 0 k^4-2(\frac{n\pi}{l})^2k^2+(\frac{n\pi}{l})^4=0 k4?2(lnπ?)2k2+(lnπ?)4=0
有两个二重根
k 1 , 2 = n π l , k 3 , 4 = ? n π l k_{1,2}=\frac{n\pi}{l},\quad k_{3,4}=-\frac{n\pi}{l} k1,2?=lnπ?,k3,4?=?lnπ?
解得相应的
Y n ( y ) = ( A n + B n y ) c h n π l y + ( C n + D n y ) s h n π l y Y_n(y)=(A_n+B_ny)ch\frac{n\pi}{l}y+(C_n+D_ny)sh\frac{n\pi}{l}y Yn?(y)=(An?+Bn?y)chlnπ?y+(Cn?+Dn?y)shlnπ?y
问题(17)式的全部变量分离形状解为
{ s i n n π l x [ ( A n + B n y ) c h n π l y + ( C n + D n y ) s h n π l y ] } , n = 1 , 2 , ? , \{sin\frac{n\pi}{l}x[(A_n+B_ny)ch\frac{n\pi}{l}y+(C_n+D_ny)sh\frac{n\pi}{l}y]\}, \quad n=1,2,\cdots, {
sinlnπ?x[(An?+Bn?y)chlnπ?y+(Cn?+Dn?y)shlnπ?y]},n=1,2,?,