Description
21 世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳。作为一名青春阳光好少年,atm
一直坚持与起床困难综合症作斗争。通过研究相关文献,他找到了该病的发病原因:在深邃的太平洋海底中,出现了一条名为 drd
的巨龙,它掌握着睡眠之精髓,能随意延长大家的睡眠时间。正是由于 drd
的活动,起床困难综合症愈演愈烈,以惊人的速度在世界上传播。为了彻底消灭这种病,atm 决定前往海底,消灭这条恶龙。历经千辛万苦,atm
终于来到了 drd 所在的地方,准备与其展开艰苦卓绝的战斗。drd
有着十分特殊的技能,他的防御战线能够使用一定的运算来改变他受到的伤害。具体说来,drd 的防御战线由
n扇防御门组成。每扇防御门包括一个运算op和一个参数t,其中运算一定是OR,XOR,AND中的一种,参数则一定为非负整数。如果还未通过防御门时攻击力为x,则其通过这扇防御门后攻击力将变为x
op t。最终drd
受到的伤害为对方初始攻击力x依次经过所有n扇防御门后转变得到的攻击力。由于atm水平有限,他的初始攻击力只能为0到m之间的一个整数(即他的初始攻击力只能在0,1,…,m中任选,但在通过防御门之后的攻击力不受
m的限制)。为了节省体力,他希望通过选择合适的初始攻击力使得他的攻击能让 drd 受到最大的伤害,请你帮他计算一下,他的一次攻击最多能使
drd 受到多少伤害。
Input
第1行包含2个整数,依次为n,m,表示drd有n扇防御门,atm的初始攻击力为0到m之间的整数。接下来n行,依次表示每一扇防御门。每行包括一个字符串op和一个非负整数t,两者由一个空格隔开,且op在前,t在后,op表示该防御门所对应的操作,
t表示对应的参数。n<=10^5
Output
一行一个整数,表示atm的一次攻击最多使 drd 受到多少伤害。
Sample Input
3 10
AND 5
OR 6
XOR 7
Sample Output
1
HINT
【样例说明1】
atm可以选择的初始攻击力为0,1,…,10。
假设初始攻击力为4,最终攻击力经过了如下计算
4 AND 5 = 4
4 OR 6 = 6
6 XOR 7 = 1
类似的,我们可以计算出初始攻击力为1,3,5,7,9时最终攻击力为0,初始攻击力为0,2,4,6,8,10时最终攻击力为1,因此atm的一次攻击最多使
drd 受到的伤害值为1。0<=m<=10^9
0<=t<=10^9
一定为OR,XOR,AND 中的一种
【运算解释】
在本题中,选手需要先将数字变换为二进制后再进行计算。如果操作的两个数二进制长度不同,则在前补0至相同长度。OR为按位或运算,处理两个长度相同的二进制数,两个相应的二进制位中只要有一个为1,则该位的结果值为1,否则为0。XOR为按位异或运算,对等长二进制模式或二进制数的每一位执行逻辑异或操作。如果两个相应的二进制位不同(相异),则该位的结果值为1,否则该位为0。
AND 为按位与运算,处理两个长度相同的二进制数,两个相应的二进制位都为1,该位的结果值才为1,否则为0。例如,我们将十进制数5与十进制数3分别进行OR,XOR 与 AND 运算,可以得到如下结果:
0101 (十进制 5) 0101 (十进制 5) 0101 (十进制 5)OR 0011 (十进制 3) XOR 0011 (十进制 3) AND 0011 (十进制 3)= 0111 (十进制 7) = 0110 (十进制 6) = 0001 (十进制 1)
题解
暴力预处理出每一位填0/1的贡献
如果能填0就填0
否则判断是否能填1,因为这一位出了1肯定比这一位出0他后面的位都填1优秀
所以就贪心搞一搞就没了。。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
int op[110000],d[110000],n,m;
int bin[30];
char ch[15];
int getlen(int x){
int ret=0;while(x){x>>=1;ret++;}return ret;}
int G[30][2];
int main()
{
// freopen("sleep10.in","r",stdin);//printf("%d\n",1<<2);scanf("%d%d",&n,&m);int maxx=getlen(m);for(int i=1;i<=n;i++){scanf("%s%d",ch+1,&d[i]);maxx=max(maxx,getlen(d[i]));if(ch[1]=='A')op[i]=1;else if(ch[1]=='O')op[i]=2;else op[i]=3;}bin[0]=1;for(int i=1;i<=maxx;i++)bin[i]=bin[i-1]*2;int tmp=(1<<maxx)-1;int sx,sy;for(int i=1;i<=n;i++){if(op[i]==1)tmp=tmp&d[i];else if(op[i]==2)tmp=tmp|d[i];else tmp=tmp^d[i];}for(int i=0;i<=maxx;i++)G[i][1]=tmp&bin[i];tmp=0;for(int i=1;i<=n;i++){if(op[i]==1)tmp=tmp&d[i];else if(op[i]==2)tmp=tmp|d[i];else tmp=tmp^d[i];}for(int i=0;i<=maxx;i++)G[i][0]=tmp&bin[i];int ans=0,ret=0;for(int i=maxx;i>=0;i--){if(G[i][0]!=0){ret+=bin[i];continue;}if(G[i][1]!=0 && ans+bin[i]<=m){ans+=bin[i];ret+=bin[i];continue;}}printf("%d\n",ret);return 0;
}