当前位置: 代码迷 >> 综合 >> You Are All Excellent 1785
  详细解决方案

You Are All Excellent 1785

热度:4   发布时间:2023-12-18 22:44:45.0

Problem Description

本次集训队共有30多人参加,毫无疑问,你们都是很优秀的,但是由于参赛名额有限,只能选拔部分队员参加省赛。从学校的角度,总是希望选拔出最优秀的18人组成6支队伍来代表学校。但是,大家也知道,要想做到完全客观,是一件很难的事情。因为选拔的标准本身就很难统一。
为了解决这个难题,我现在把问题作了简化,现在假设每个队员都是二维平面中的一个点,用(xi,yi)坐标来表示,一个队员的能力可以用他到原点的欧几里德距离来表示。由于这种排名标准太~客观了,新队员很难有出头的机会,很多人很是郁闷。特别是一个废话不是很多、不是特别暴躁、号称盖帽高手的伪**就很有意见,他现在要求改革排名规则,并且自己提出了一套号称绝对公正的方案:
现在不是用一个点来表示一个队员了,而是用原点到该队员所在的点所构成的向量来表示一个队员。如果该向量和X正轴夹角比较小的话,就说他的能力比较高,排名就应该靠前。
这就是著名的“伪氏规则”(说实话,这规则我有点怀疑其客观性,因为我知道他的坐标是(3.1,0.1)...)

Input 

输入数据包含多组测试实例,每个实例的第一行是一个整数n(n<=100),表示集训队员的人数,紧接着的一行是2*n个数,表示n个队员的坐标值(x1,y1,x2,y2...xn,yn),n为负数的时候表示输入数据的结束。
特别说明,所有的y坐标均为正数,并且所有的坐标值都是有一位小数的浮点数。

Output 

对于每个测试实例,请在一行内输出排名后的坐标,坐标之间用一个空格隔开。特别地,你可以假设根据“伪氏排名规则”结果唯一。

Sample Input 

  
   
3 5.0 4.0 3.1 0.1 2.0 2.0 -1

Sample Output

  
   
3.1 0.1 5.0 4.0 2.0 2.0

AC代码

#include <cstdio>
#include <vector>
#include <utility>
#include <cmath>
#include <algorithm>bool cmp(const std::pair<double, double>& lhs, const std::pair<double, double>& rhs)
{double dLhs = lhs.first/sqrt(lhs.first*lhs.first + lhs.second*lhs.second);double dRhs = rhs.first/sqrt(rhs.first*rhs.first + rhs.second*rhs.second);return dLhs > dRhs;
}int main(int argc, const char* argv[])
{int n = 0;while (scanf("%d", &n) != EOF && n >0){std::vector<std::pair<double, double> > vec;std::pair<double, double> p;for (int i=0; i<n; ++i){scanf("%lf%lf", &p.first, &p.second);vec.push_back(p);}std::sort(vec.begin(), vec.end(), cmp);for (unsigned i=0; i<vec.size(); ++i){if (i == 0){printf("%.1lf %.1lf", vec[i].first, vec[i].second);}else{printf(" %.1lf %.1lf", vec[i].first, vec[i].second);}}printf("\n");}return 0;
}