题目
总时间限制: 1000ms 内存限制: 65536kB
描述
Bessie has gone to the mall’s jewelry store and spies a charm bracelet. Of course, she’d like to fill it with the best charms possible from the N(1 ≤ N≤ 3,402) available charms. Each charm iin the supplied list has a weight Wi(1 ≤ Wi≤ 400), a ‘desirability’ factor Di(1 ≤ Di≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M(1 ≤ M≤ 12,880).
Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.
输入
Line 1: Two space-separated integers: N and M
Lines 2…N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di
输出
Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints
样例输入
4 6
1 4
2 6
3 12
2 7
样例输出
23
思路
动规题目,首先找到子问题。要解决的问题是N个物品,限重M,求价值最大。可以考虑某一个物品是否选中的最大值,即
- 该物品选中:该物品的价值加上剩下N-1个物品的最大价值
- 该物品没选中:剩下N-1个物品的最大价值。
其中,第一种需要考虑剩下N-1种物品的限重也是减小的。
递推公式:V_MAX[i,j]=MAX(V_MAX[i?1,j],V_MAX[i?1,j?w[i]]+d[i])V\_MAX[i,j] = MAX(V\_MAX[i-1,j],V\_MAX[i-1,j-w[i]]+d[i])V_MAX[i,j]=MAX(V_MAX[i?1,j],V_MAX[i?1,j?w[i]]+d[i]) ,其中V_MAX[i,j]V\_MAX[i,j]V_MAX[i,j]是第一i物品限重为j时的最大值,w[i]w[i]w[i]是第i个物品的质量 ,d[i]d[i]d[i]是第i个物品的价值。V_MAX[i?1,j]V\_MAX[i-1,j]V_MAX[i?1,j]是不选第i个物品,价值为前i?1i-1i?1个限重为jjj时的价值;V_MAX[i?1,j?w[i]]+d[i]V\_MAX[i-1,j-w[i]]+d[i]V_MAX[i?1,j?w[i]]+d[i]是选第iii个物品限重为jjj的价值,这里是减是因为限重是已经固定的,所以只能是调整前i?1i-1i?1个物品的质量,如果是加的话,限重就不是jjj了
该题由于数组太大,内存限制会超,故使用滚动数组记录,只保留一个一维数组来记录
#include <stdio.h>
#include<algorithm>
int N,M;
int w[3405];
int d[3405];
int lo[12880];
using namespace std;int main()
{scanf("%d%d",&N,&M);for(int i=0;i<N;i++){scanf("%d%d",&(w[i]),&(d[i]));}for(int i=0;i<N;i++){for(int j=M;j>=w[i];j--){lo[j] = max(lo[j],lo[j-w[i]]+d[i]);}}printf("%d",lo[M]);return 0;
}