问题描述:
Given an integer n, return the number of trailing zeroes in n!.
Note: Your solution should be in logarithmic time complexity.
思路:
问题要求 n! 的零尾个数,小数试验一下就知道,2的个数太多不用管,关键是求5和5的幂的个数。所以就求对于每一个k,n/(5^k),k属于{k|5^k<=n,k>0}
但是在用int来保存 5^k的值时,在极限情况下会出现超出int范围的值,所以应该用unsigned int 或是 long int。后来发现 unsigned int 还是很不安全,只是比 int 多一倍,但乘幂一下子就会是 5 倍,仍然会出现溢出。
代码:
class Solution {
public:int trailingZeroes(int n) {int amount = 0;long power_five = 1; //if not unsigned, may be exceed the int 2147483647 while(1){power_five *= 5;if(power_five > n) break;int addition = n / power_five; //the number of "5's power" is the so important that it doesn't matter neglecting the 2.amount += addition;}return amount;}
};