当前位置: 代码迷 >> 综合 >> POJ3264Balanced Lineup【RMQ模板】
  详细解决方案

POJ3264Balanced Lineup【RMQ模板】

热度:17   发布时间:2023-12-17 08:49:30.0
Language:
Balanced Lineup
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 39748   Accepted: 18658
Case Time Limit: 2000MS

Description

For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers,  N and  Q
Lines 2.. N+1: Line  i+1 contains a single integer that is the height of cow  i 
Lines  N+2.. N+ Q+1: Two integers  A and  B (1 ≤  A ≤  B ≤  N), representing the range of cows from  A to  B inclusive.

Output

Lines 1.. Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0

Source

USACO 2007 January Silver

求区间最大值与最小值的差

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
using namespace std;
int MAX(int a,int b)
{return a>b?a:b;
}
int MIN(int a,int b)
{return a<b?a:b;
}
int n;
int dpmin[50005][20];
int dpmax[50005][20];
void init()
{int i,j;for(j=1;j<=log2(n+1);++j){for(i=1;i<=n-(1<<j)+1;++i){dpmax[i][j]=MAX(dpmax[i][j-1],dpmax[i+(1<<(j-1))][j-1]);dpmin[i][j]=MIN(dpmin[i][j-1],dpmin[i+(1<<(j-1))][j-1]);}}
}
int query(int l,int r)
{int k=log2(r-l+1);int h=MAX(dpmax[l][k],dpmax[r-(1<<k)+1][k]);int s=MIN(dpmin[l][k],dpmin[r-(1<<k)+1][k]);return h-s;
}
int main()
{int i,j,q;scanf("%d%d",&n,&q);for(i=1;i<=n;++i){scanf("%d",&dpmin[i][0]);dpmax[i][0]=dpmin[i][0];}init();int l,r;for(i=0;i<q;++i){scanf("%d%d",&l,&r);printf("%d\n",query(l,r));}return 0;
}