Terms of Use
OpenLORIS-Object数据集依照CC BY-ND 4.0许可进行发布。提供在这的数据集是用来评估终身学习目标识别算法的第一个版本,如果在任何学术工作中使用到这个数据集,请引用下面我们的论文。
Paper
Qi She et al. "OpenLORIS-Object: A Dataset and Benchmark towards Lifelong Object Recognition". arXiv:1911.06487, 2019
- Qi She et al., "IROS 2019 Lifelong Robotic Vision: Object Recognition Challenge [Competitions]," in IEEE Robotics & Automation Magazine, vol. 27, no. 2, pp. 11-16, June 2020, doi: 10.1109/MRA.2020.2987186.
Bibtex:
@article{she2019openloris,
title={OpenLORIS-Object: A Dataset and Benchmark towards Lifelong Object Recognition},
author={She, Qi and Feng, Fan and Hao, Xinyue and Yang, Qihan and Lan, Chuanlin and Lomonaco, Vincenzo and Shi, Xuesong and Wang, Zhengwei and Guo, Yao and Zhang, Yimin and others},
journal={arXiv preprint arXiv:1911.06487},
year={2019}
}
@article{9113359,
title={IROS 2019 Lifelong Robotic Vision: Object Recognition Challenge [Competitions]},
author={H. {Bae} and E. {Brophy} and R. H. M. {Chan} and B. {Chen} and F. {Feng} and G. {Graffieti} and V. {Goel} and X. {Hao} and H. {Han} and S. {Kanagarajah} and S. {Kumar} and S. {Lam} and T. L. {Lam} and C. {Lan} and Q. {Liu} and V. {Lomonaco} and L. {Ma} and D. {Maltoni} and G. I. {Parisi} and L. {Pellegrini} and D. {Piyasena} and S. {Pu} and Q. {She} and D. {Sheet} and S. {Song} and Y. {Son} and Z. {Wang} and T. E. {Ward} and J. {Wu} and M. {Wu} and D. {Xie} and Y. {Xu} and L. {Yang} and Q. {Yang} and Q. {Zhong} and L. {Zhou}},
journal={IEEE Robotics Automation Magazine},
year={2020},
volume={27},
number={2},
pages={11-16},}
Index
从下面的索引中下载文件。我们分别为IROS 2019终身学习机器人视觉挑战赛[project homepage, parper]和ICRA 2020[paper, video]发布了两个版本。请注意,在IROS2019终身学习机器人视觉挑战赛中,我们并没有为参赛人员提供标签文件(masks, bounding boxes等)。
OpenLORIS_Object_IROS2019:在四种不同环境下,存放着每个物体(总共有69个物体)工作视频的压缩文件,每个场景下的数据集都可以用于特定的研究目的中。
注:上面是截图,因为不好排版,下面提供数据的下载地址。
(1)train.zip [ download ( Google Drive ) or download ( Baidu Pan ) ]
(2)validation.zip [ download ( Google Drive ) or download (Baidu Pan ) ]
(3)test.zip [ download (Google Drive ) or download (Baidu Pan ) ]
OpenLORIS_Object_ICRA2020: 在四种不同环境下,存放着每个物体(总共有69个物体)工作视频的压缩文件,每个场景下的数据集都可以用于特定的研究目的中。注意,我们只为69个物体提供了标签(masks和boundingboxes),我们之后会为剩下的物体提供标签。
注:上面是截图,因为不好排版,下面提供数据的下载地址。
(1)train.zip [ download ( Google Drive ) ]
(2)validation.zip [ download ( Google Drive ) ]
(3)test.zip [ download (Google Drive ) ]
(4)test2.zip [ download (Google Drive ) or download (Baidu Pan) ]
(5)mask & bbox.zip [ download (Google Drive ) ]
Scripts
benchmark1.py [ download ]
运行下面的脚本程序,为测试基准1准备数据集:
>python3 benchmark1.py
benchmark2.py [ download ]
运行下面的脚本程序,为测试基准2准备数据集:
>python3 benchmark2.py
Note
如果对我们的数据集有疑问的话,欢迎联系我们 (mailto: sheqi1991@gmail.com)
这个文章的原文地址是这里。