题目
UVa 10213 How Many Pieces of Land ?
题解
欧拉公式 V?E+F=2 所以找出顶点数和边数就行了,枚举两个点,在左半边的如果有 i 个,右边有
V=n+n4∑i=1n?3i(n?2?i)
E=2n+n2∑i=1n?3(i(n?2?i)+1)
恩然后能算出 F=E?V+2 ,但是这包括了最外面那个无限面,所以答案实际上是 E?V+1
恩展示一下化简过程( 12+22+33+…+n2=n(n+1)(2n+1)6 )。
设
A===∑i=1n?3(n?i?2)i(n?2)?(n?2)(n?3)2?(n?3)(n?2)(2n?5)6n3?6n2+11n?66
则
E?V+1====1+2n+n2(A+∑i=1n?31)?n?n4?A1+n+n(n?3)2+n4?A1+n2?n2+n4?A124(n4?63+23n2?18n)+1
然后就高精xjb搞了,因为这里有除法所以好像很多人懒得写的样子(像我根本就不会),其实这里24很小,属于低精,可以写成按位除的形式,详见紫书P314页–大整数取模,或者看代码。
代码
//QWsin
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;const int maxn=1000;
char a[maxn];
struct BIGNUM{static const int base=10000;static const int baseL=4;int num[maxn],len;BIGNUM (){
memset(num,0,sizeof(num));len=1;}BIGNUM operator = (int x){memset(num,0,sizeof(num));int tmp=x;len=0;for(;tmp;tmp/=10)len++;a[len]='\0';tmp=x;for(int i=len-1;i>=0;i--) a[i]='0'+tmp%10,tmp/=10;return *this=a; }BIGNUM operator = (const char* s){memset(num,0,sizeof(num));len=strlen(s);for(int cnt=0;baseL*cnt<=len;cnt++)for(int j=baseL;j>=1;j--)if(len-cnt*baseL-j>=0) num[cnt]=num[cnt]*10+s[len-cnt*baseL-j]-'0';len=len/baseL+(len%baseL!=0);return *this;}BIGNUM(const int rhs){*this=rhs;}BIGNUM operator *(const BIGNUM& x){BIGNUM c;c.len=len+x.len;for(int i=0;i<x.len;i++)for(int j=0;j<len;j++){c.num[i+j]+=num[j]*x.num[i];c.num[i+j+1]+=c.num[i+j]/base;c.num[i+j]%=base;}while(c.num[c.len-1]==0&&c.len>1)c.len--;return c;}BIGNUM operator *=(const BIGNUM& rhs){
return *this=*this * rhs;}BIGNUM operator + (const BIGNUM& rhs)const{BIGNUM c;int alen;alen=max(rhs.len,len);c.len=alen+1;int x=0;for(int i=0;i<=alen;i++){if(i<rhs.len){x+=rhs.num[i];}if(i<len){x+=num[i];} c.num[i]+=x%base;x/=base;} while(c.num[c.len-1]==0&&c.len>1)c.len--;return c;}BIGNUM operator += (const BIGNUM& rhs){
return *this=*this+rhs;}BIGNUM operator - (const BIGNUM& rhs)const{BIGNUM c;c.len=len;for(int i=0;i<len;i++){c.num[i]=c.num[i]+num[i]-rhs.num[i];if(c.num[i]<0) c.num[i]+=base,c.num[i+1]-=1; }while(c.num[c.len-1]==0&&c.len>1) c.len--;return c;}BIGNUM operator -= (const BIGNUM& rhs){
return *this=*this-rhs;} BIGNUM operator / (const int &rhs)const{
//高精除低精做法BIGNUM c;c.len=len;long long x=0;for(int i=len-1;i>=0;--i){x=x*base+num[i];c.num[i]=x/rhs;x%=rhs;}while(c.num[c.len-1]==0&&c.len>1) --c.len;return c;}
};
istream& operator >> (istream& in,BIGNUM &x){in>>a;x=a;return in;
}
ostream& operator << (ostream& out,const BIGNUM &x)
{printf("%d",x.num[x.len-1]);for(int i=x.len-2;i>=0;i--)printf("%04d",x.num[i]);return out;
}typedef BIGNUM ll;inline void solve()
{ll n;cin>>n;n=n*n*n*n+(ll)23*n*n-(ll)6*n*n*n-(ll)18*n;cout<<n/24+(ll)1<<endl;
}int main()
{int T;cin>>T;while(T--) solve();return 0;
}