文献:Deep Image Homography Estimation,下载地址
输入:128x128x2
Padding:'SAME'
池化步长:2
回归模型(HomographyNet-Regression):
conv1 3x3 : 128x128x64
conv2 3x3 : 128x128x64
maxpooling1 2x2: 64x64x64
conv3 3x3 : 64x64x64
conv4 3x3 : 64x64x64
maxpooling2 2x2: 32x32x64
conv5 3x3 : 32x32x128
conv6 3x3 : 32x32x128
maxpooling3 2x2: 16x16x128
conv7 3x3 : 16x16x128
conv8 3x3 : 16x16x128
fully connect1: 1024x1
fully connect2: 8x1
loss function:
分类模型(HomographyNet-Classification):
conv1 3x3 : 128x128x64
conv2 3x3 : 128x128x64
maxpooling1 2x2: 64x64x64
conv3 3x3 : 64x64x64
conv4 3x3 : 64x64x64
maxpooling2 2x2: 32x32x64
conv5 3x3 : 32x32x128
conv6 3x3 : 32x32x128
maxpooling3 2x2: 16x16x128
conv7 3x3 : 16x16x128
conv8 3x3 : 16x16x128
fully connect1: 1024x1
fully connect2: 8x21
softmax
loss function:
训练方式:SGD(随机梯度下降法) ,momentum = 0.9
训练数据制作:
训练标签:
,与放射矩阵H一一对应
训练设置:conv8与fully connect1需要添加dropout=0.5
测试数据集:MS-COCO
运行效率:NVIDIA Titan X GPU, 300fps