当前位置: 代码迷 >> 综合 >> Pairwise Confusion for Fine-Grained Visual Classification
  详细解决方案

Pairwise Confusion for Fine-Grained Visual Classification

热度:31   发布时间:2023-12-15 00:44:00.0

Pairwise Confusion for Fine-Grained Visual Classification

 

摘要

 

文中主要介绍了一种称为pairwise confusion正则化的方法。这类方法能够关注到类内的相似性。

在pairwise confusion结构中,使用了孪生网络在一个新的loss function中训练,目的是为了将类别内的概率更加接近。

网络结构

 

使用一个类似孪生网络的结构,对每个分支使用交叉熵训练,然后再使用 engery_distance 最小化loss,将每一个batch 分解成两个小batch输入到孪生网络中。

 

名词解释

条件概率confusing,使得两张图片对于输出各类的概率分布相似,主要使用距离来度量。

K-L三散度可以用来度量,条件概率分布的相似性距离。文中给出了欧式距离以及K-L散度的两种介绍。

 

Loss 函数

 

其中N表示类别数量,其中u,v表示集合量的多少, i,j表示类别。

 

 

欧式度量的解释

i, j类别集合mi, mj,欧式度量如下

简化认为两个集合的数量总体都是n

 

  相关解决方案