当前位置: 代码迷 >> 综合 >> DLX精确覆盖 poj2676 Sudoku
  详细解决方案

DLX精确覆盖 poj2676 Sudoku

热度:34   发布时间:2023-12-14 03:48:10.0

传送门:点击打开链接

题意:求数独

思路:早就听说了DLX精确覆盖的强大,看了两天终于勉强算是看懂了,关于DLX的详细介绍可以参考下面3位大神总结的

DLX的原理:点击打开链接

DLX用C++的实现代码:点击打开链接

DLX的建图技巧:点击打开链接


要注意的几个地方就是,DLX有两种模式,一种是精确覆盖,一种是重复覆盖。

重复覆盖中包含了一个A*的估计函数,用来剪枝

然后就是把握好建图(感觉这个非常关键)


DLX中包含了许多链表的妙用,比如如何建立循环链表,如何循环除了本身以外的所有其他节点,如何在链表中删除和恢复删除等等,写的非常的飘逸~

#include<map>
#include<set>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<string>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#define fuck printf("fuck")
#define FIN freopen("input.txt","r",stdin)
#define FOUT freopen("output.txt","w+",stdout)
using namespace std;
typedef long long LL;const int MX = 1000 + 5;
const int MN = 1000000 + 5;
const int INF = 0x3f3f3f3f;int ans[MX][MX];struct DLX {int m, n;int H[MX], S[MX];int Row[MN], Col[MN], rear;int L[MN], R[MN], U[MN], D[MN];void Init(int _m, int _n) {m = _m; n = _n;rear = n;for(int i = 0; i <= n; i++) {S[i] = 0;L[i] = i - 1;R[i] = i + 1;U[i] = D[i] = i;}L[0] = n; R[n] = 0;for(int i = 1; i <= m; i++) {H[i] = -1;}}void Link(int r, int c) {int rt = ++rear;Row[rt] = r; Col[rt] = c; S[c]++;D[rt] = D[c]; U[D[c]] = rt;U[rt] = c; D[c] = rt;if(H[r] == -1) {H[r] = L[rt] = R[rt] = rt;} else {int id = H[r];R[rt] = R[id]; L[R[id]] = rt;L[rt] = id; R[id] = rt;}}void Remove(int c) {R[L[c]] = R[c]; L[R[c]] = L[c];for(int i = D[c]; i != c; i = D[i]) {for(int j = R[i]; j != i; j = R[j]) {D[U[j]] = D[j]; U[D[j]] = U[j];S[Col[j]]--;}}}void Resume(int c) {for(int i = U[c]; i != c; i = U[i]) {for(int j = L[i]; j != i; j = L[j]) {D[U[j]] = U[D[j]] = j;S[Col[j]]++;}}R[L[c]] = L[R[c]] = c;}bool Dance(int cnt) {if(R[0] == 0) return true;int c = R[0];for(int i = R[0]; i != 0; i = R[i]) {if(S[i] < S[c]) c = i;}Remove(c);for(int i = D[c]; i != c; i = D[i]) {for(int j = R[i]; j != i; j = R[j]) Remove(Col[j]);int r = Row[i];ans[(r - 1) / 81 + 1][((r - 1) % 81) / 9 + 1] = ((r - 1) % 81) % 9 + 1;if(Dance(cnt + 1)) return true;for(int j = L[i]; j != i; j = L[j]) Resume(Col[j]);}Resume(c);return false;}
} G;int S[MX][MX], vis[10];void check(int x, int y) {for(int i = 1; i <= 9; i++) vis[i] = 0;for(int i = 1; i <= 9; i++) {vis[S[i][y]] = vis[S[x][i]] = 1;}int tx = (x - 1) / 3 + 1, ty = (y - 1) / 3 + 1;for(int i = (tx - 1) * 3 + 1; i <= tx * 3; i++) {for(int j = (ty - 1) * 3 + 1; j <= ty * 3; j++) {vis[S[i][j]] = 1;}}
}int main() {int T; //FIN;scanf("%d", &T);while(T--) {G.Init(9 * 9 * 9, 4 * 9 * 9);for(int i = 1; i <= 9; i++) {for(int j = 1; j <= 9; j++) {scanf("%1d", &S[i][j]);}}for(int i = 1; i <= 9; i++) {for(int j = 1; j <= 9; j++) {int tx = (i - 1) / 3 + 1, ty = (j - 1) / 3 + 1, tp = (tx - 1) * 3 + ty;if(!S[i][j]) {check(i, j);for(int k = 1; k <= 9; k++) {if(vis[k]) continue;int id = ((i - 1) * 9 + j - 1) * 9 + k;G.Link(id, (i - 1) * 9 + j);G.Link(id, 9 * 9 + (i - 1) * 9 + k);G.Link(id, 2 * 9 * 9 + (j - 1) * 9 + k);G.Link(id, 3 * 9 * 9 + (tp - 1) * 9 + k);}} else {int k = S[i][j];int id = ((i - 1) * 9 + j - 1) * 9 + k;G.Link(id, (i - 1) * 9 + j);G.Link(id, 9 * 9 + (i - 1) * 9 + k);G.Link(id, 2 * 9 * 9 + (j - 1) * 9 + k);G.Link(id, 3 * 9 * 9 + (tp - 1) * 9 + k);}}}int ret = G.Dance(0);for(int i = 1; i <= 9; i++) {for(int j = 1; j <= 9; j++) {if(S[i][j]) printf("%d", S[i][j]);else printf("%d", ans[i][j]);}printf("\n");}}return 0;
}