numpy数组属性
详细信息请查询菜鸟笔记,欢迎转载!
- NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推。
- NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。
- 很多时候可以声明 axis。axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作;axis=1,表示沿着第1轴进行操作,即对每一行进行操作。
NumPy 的数组中比较重要 ndarray 对象属性有:
属性 | 说明 |
---|---|
ndarray.ndim | 秩,即轴的数量或维度的数量 |
ndarray.shape | 数组的维度,对于矩阵,n 行 m 列 |
ndarray.size | 数组元素的总个数,相当于 .shape 中 n*m 的值 |
ndarray.dtype | ndarray 对象的元素类型 |
ndarray.itemsize | ndarray 对象中每个元素的大小,以字节为单位 |
ndarray.flags | ndarray 对象的内存信息 |
ndarray.real | ndarray元素的实部 |
ndarray.imag | ndarray 元素的虚部 |
ndarray.data | 包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。 |
实例
(1)ndarray.ndim
ndarray.ndim 用于返回数组的维数,等于秩。
import numpy as np
a = np.arange(24)
print (a.ndim) # a 现只有一个维度
# 现在调整其大小
b = a.reshape(2,4,3) # b 现在拥有三个维度
print (b.ndim)
输出结果为
1
3
(2)ndarray.shape与numpy.reshape()函数
ndarray.shape 表示数组的维度,返回一个元组,这个元组的长度就是维度的数目,即 ndim 属性(秩)。比如,一个二维数组,其维度表示"行数"和"列数"。
ndarray.shape 也可以用于调整数组大小。注意调整数组大小,如从(2,3)变成(3,2)时,并不是数组倒置。
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
print(a)
print (a.shape)
#调整数组大小
a.shape = (3,2) #非进行数组倒置
#a.reshape(3,2)与a.shape(3,2)效果相同
print (a)
输出结果为
[[1,2,3][4,5,6]](2,3)[[1 2][3 4][5 6]]