前面的博文对TOA定位的线性方法给予了仿真实验,这里将这些RMSE仿真结果放到一起,比较它们的定位性能。
Repeat the test of the linear approaches; that is, compare the MSPE performance of LLS, WLLS, two - step WLS, and subspace methods for SNR ∈ [ ? 10, 60] dB.
Figure 1 shows the RMSEs of different linear schemes at SNR ∈ [ ? 10, 60] dB. It is seen that the two - step WLS scheme, which exploits the constraint of Equation 2.76 , gives the highest localization performance, followed by WLLS, LLS, and subspace estimators.
注:the two - step WLS scheme和WLLS在博文:WLLS Algorithm of TOA - Based Positioning (include the two - step WLS estimator)
响应的仿真可见我的其他博文,这里就不贴出来了。
至于式2.76的限制为:
下面是这四种线性算法的定位均方根误差仿真图:
从图中可以看出,在信噪比为10之前,孰优孰劣,一看便知,至于信噪比为10dB之后,就不太能分清楚了。
下面分别给出这四条曲线,并给出信噪比为20以及30dB时候的RMSE曲线值,仅比较这两个点:
LLS:
WLLS:
two step WLLS:
subspace:
可见,当信噪比在20dB时候,two_step WLLS算法的定位精度最高,30dB的时候,也是two_step WLLS定位精度最高。
最后我们不得不说,总体来说,two_step WLLS算法的定位精度在这四种定位算法中是最优的。