标签: bilateralfiltering双边滤波 |
双边滤波器是什么?
双边滤波(Bilateral filter)是一种可以保边去噪的滤波器。之所以可以达到此去噪效果,是因为滤波器是由两个函数构成。一个函数是由几何空间距离决定滤波器系数。另一个由像素差值决定滤波器系数。可以与其相比较的两个filter:高斯低通滤波器(http://en.wikipedia.org/wiki/Gaussian_filter)和α-截尾均值滤波器(去掉百分率为α的最小值和最大之后剩下像素的均值作为滤波器),后文中将结合公式做详细介绍。
双边滤波器中,输出像素的值依赖于邻域像素的值的加权组合,
权重系数w(i,j,k,l)取决于定义域核
和值域核
的乘积
同时考虑了空间域与值域的差别,而Gaussian Filter和α均值滤波分别只考虑了空间域和值域差别。
=======================================================================
双边滤波器的实现(MATLAB):function B = bfilter2(A,w,sigma)
CopyRight:
% Douglas R. Lanman, Brown University, September 2006.
% dlanman@brown.edu, http://mesh.brown.edu/dlanman
具体请见function B = bfltGray(A,w,sigma_d,sigma_r)函数说明。
- %简单地说:
- %A为给定图像,归一化到[0,1]的矩阵
- %W为双边滤波器(核)的边长/2
- %定义域方差σd记为SIGMA(1),值域方差σr记为SIGMA(2)
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %
Pre-process input and select appropriate filter. - function
B = bfilter2(A,w,sigma) -
- %
Verify that the input image exists and is valid. - if
~exist( 'A','var')|| isempty(A) -
error('Input image );A is undefined or invalid.' - end
- if
~isfloat(A) || ~sum([1,3] == size(A,3)) || ... -
min(A(:)) < 0 || max(A(:)) > 1 -
error(['Input image ,...A must be a double precision ' -
'matrix of ,...size NxMx1 or NxMx3 on the closed ' -
'interval [0,1].' ]); - end
-
- %
Verify bilateral filter window size. - if
~exist( 'w','var')|| isempty(w) || ... -
numel(w) ~= 1 || w < 1 -
w = 5; - end
- w
= ceil(w); -
- %
Verify bilateral filter standard deviations. - if
~exist( 'sigma','var')|| isempty(sigma) || ... -
numel(sigma) ~= 2 || sigma(1) <= 0 || sigma(2) <= 0 -
sigma = [3 0.1]; - end
-
- %
Apply either grayscale or color bilateral filtering. - if
size(A,3) == 1 -
B = bfltGray(A,w,sigma(1),sigma(2)); - else
-
B = bfltColor(A,w,sigma(1),sigma(2)); - end
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %
Implements bilateral filtering for grayscale images. - function
B = bfltGray(A,w,sigma_d,sigma_r) -
- %
Pre-compute Gaussian distance weights. - [X,Y]
= meshgrid(-w:w,-w:w); - %创建核距离矩阵,e.g.
- %
[x,y]=meshgrid(-1:1,-1:1) - %
- %
x = - %
- %
-1 0 1 - %
-1 0 1 - %
-1 0 1 - %
- %
- %
y = - %
- %
-1 -1 -1 - %
0 0 0 - %
1 1 1 - %计算定义域核
- G
= exp(-(X.^2+Y.^2)/(2*sigma_d^2)); -
- %
Create waitbar. - h
= waitbar(0,'Applying bilateral );filter...' - set(h,'Name','Bilateral
Filter );Progress' -
- %
Apply bilateral filter. - %计算值域核H
并与定义域核G 乘积得到双边权重函数F - dim
= size(A); - B
= zeros(dim); - for
i = 1:dim(1) -
for j = 1:dim(2) -
-
% Extract local region. -
iMin = max(i-w,1); -
iMax = min(i+w,dim(1)); -
jMin = max(j-w,1); -
jMax = min(j+w,dim(2)); -
%定义当前核所作用的区域为(iMin:iMax,jMin:jMax) -
I = A(iMin:iMax,jMin:jMax);%提取该区域的源图像值赋给I -
-
% Compute Gaussian intensity weights. -
H = exp(-(I-A(i,j)).^2/(2*sigma_r^2)); -
-
% Calculate bilateral filter response. -
F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1); -
B(i,j) = sum(F(:).*I(:))/sum(F(:)); -
-
end -
waitbar(i/dim(1)); - end
-
- %
Close waitbar. - close(h);
-
-
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %
Implements bilateral filter for color images. - function
B = bfltColor(A,w,sigma_d,sigma_r) -
- %
Convert input sRGB image to CIELab color space. - if
exist( 'applycform','file') -
A = applycform(A,makecform('srgb2lab')); - else
-
A = colorspace('Lab<-RGB',A); - end
-
- %
Pre-compute Gaussian domain weights. - [X,Y]
= meshgrid(-w:w,-w:w); - G
= exp(-(X.^2+Y.^2)/(2*sigma_d^2)); -
- %
Rescale range variance (using maximum luminance). - sigma_r
= 100*sigma_r; -
- %
Create waitbar. - h
= waitbar(0,'Applying bilateral );filter...' - set(h,'Name','Bilateral
Filter );Progress' -
- %
Apply bilateral filter. - dim
= size(A); - B
= zeros(dim); - for
i = 1:dim(1) -
for j = 1:dim(2) -
-
% Extract local region. -
iMin = max(i-w,1); -
iMax = min(i+w,dim(1)); -
jMin = max(j-w,1); -
jMax = min(j+w,dim(2)); -
I = A(iMin:iMax,jMin:jMax,:); -
-
% Compute Gaussian range weights. -
dL = I(:,:,1)-A(i,j,1); -
da = I(:,:,2)-A(i,j,2); -
db = I(:,:,3)-A(i,j,3); -
H = exp(-(dL.^2+da.^2+db.^2)/(2*sigma_r^2)); -
-
% Calculate bilateral filter response. -
F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1); -
norm_F = sum(F(:)); -
B(i,j,1) = sum(sum(F.*I(:,:,1)))/norm_F; -
B(i,j,2) = sum(sum(F.*I(:,:,2)))/norm_F; -
B(i,j,3) = sum(sum(F.*I(:,:,3)))/norm_F; -
-
end -
waitbar(i/dim(1)); - end
-
- %
Convert filtered image back to sRGB color space. - if
exist( 'applycform','file') -
B = applycform(B,makecform('lab2srgb')); - else
-
B = colorspace('RGB<-Lab',B); - end
-
- %
Close waitbar. - close(h);
调用方法:
- I=imread('einstein.jpg');
- I=double(I)/255;
-
- w
= 5; % bilateral filter half-width - sigma
= [3 0.1]; % bilateral filter standard deviations -
- I1=bfilter2(I,w,sigma);
-
- subplot(1,2,1);
- imshow(I);
- subplot(1,2,2);
- imshow(I1)
实验结果:
参考资料:
1.《Computer Vision Algorithms and Applications》
2.
3.http://www.cs.duke.edu/~tomasi/papers/tomasi/tomasiIccv98.pdf
4.
5.