当前位置: 代码迷 >> 综合 >> 深度学习优化函数详解-- Nesterov accelerated gradient (NAG)
  详细解决方案

深度学习优化函数详解-- Nesterov accelerated gradient (NAG)

热度:55   发布时间:2023-12-12 01:15:53.0

动量法每下降一步都是由前面下降方向的一个累积和当前点的梯度方向组合而成。于是一位大神(Nesterov)就开始思考,既然每一步都要将两个梯度方向(历史梯度、当前梯度)做一个合并再下降,那为什么不先按照历史梯度往前走那么一小步,按照前面一小步位置的“超前梯度”来做梯度合并呢?如此一来,小球就可以先不管三七二十一先往前走一步,在靠前一点的位置看到梯度,然后按照那个位置再来修正这一步的梯度方向。如此一来,有了超前的眼光,小球就会更加”聪明“, 这种方法被命名为Nesterov accelerated gradient 简称 NAG。
这里写图片描述

↑这是momentum下降法示意图这里写图片描述

↑这是NAG下降法示意图
看上面一张图仔细想一下就可以明白,Nesterov动量法和经典动量法的差别就在B点和C点梯度的不同。

公式推导

记vt,vt? 为第t次迭代梯度的累积
                                                                        

参数更新公式:

 

                                                                    

 

实验

实验选择了学习率 η=0.01, 衰减率 γ=0.9

这里写图片描述

 

↑ 这是Nesterov方法

 

↑ 这是动量法(momentum)

没有对比就没有伤害,NAG方法收敛速度明显加快。波动也小了很多。实际上NAG方法用到了二阶信息,所以才会有这么好的结果。

实验源码下载 https://github.com/tsycnh/mlbasic/blob/master/p5 Nesterov momentum.py
 

 

  相关解决方案