当前位置: 代码迷 >> 综合 >> Caffe实战之Python接口系列(二)Learning-LeNet
  详细解决方案

Caffe实战之Python接口系列(二)Learning-LeNet

热度:46   发布时间:2023-12-12 00:43:52.0

引言

记录学习官网的例程中的一些重要语句,遇到的问题等,内容分散,建议顺序查看。
主要是调用Caffe的Python接口
源文件就在{caffe_root}/examples中,安装sudo pip install jupyter打开即可运行,初学者最好是放在它指定的目录,如,否则要改很多路径。
注:eaxmples是用jupyter notebook写的,部分Cell中出现了一些特殊的用法:
1. 感叹号‘!’:用于执行系统命令,如 !pwd
2. 百分号‘%’:用法太多,如 %matplotlib inline 显示绘图窗口 详见Jupyter Notebook Viewer

目录

  • 引言
  • 目录
    • 用Python接口学习LeNet
      • 1. 创建网络
      • 2. 加载和检查求解器
        • 2.1. 选择训练设备,加载求解器
        • 2.2. 检查网络的中间输出和参数的维度
        • 2.3. 运行一次train & test 来检查是否正常
        • 2.4. 用一个小技巧来平铺前八张图片
      • 3. 迭代求解器
      • 4. 写一个常规训练循环
      • 5. 架构实验和优化
  • 上一篇:Caffe实战之Python接口系列(一)Classification_Visualization
  • 下一篇:Caffe实战之Python接口系列(三)Fine-tuning a Pretrained Network

用Python接口学习LeNet

1. 创建网络

from caffe import layers as L, params as Pdef lenet(lmdb, batch_size):# our version of LeNet: a series of linear and simple nonlinear transformations 定义两个参数,支持train和test net设置不同的值n = caffe.NetSpec()n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb,transform_param=dict(scale=1./255), ntop=2)n.conv1 = L.Convolution(n.data, kernel_size=5, num_output=20, weight_filler=dict(type='xavier'))n.pool1 = L.Pooling(n.conv1, kernel_size=2, stride=2, pool=P.Pooling.MAX)n.conv2 = L.Convolution(n.pool1, kernel_size=5, num_output=50, weight_filler=dict(type='xavier'))n.pool2 = L.Pooling(n.conv2, kernel_size=2, stride=2, pool=P.Pooling.MAX)n.fc1 =   L.InnerProduct(n.pool2, num_output=500, weight_filler=dict(type='xavier'))n.relu1 = L.ReLU(n.fc1, in_place=True)n.score = L.InnerProduct(n.relu1, num_output=10, weight_filler=dict(type='xavier'))n.loss =  L.SoftmaxWithLoss(n.score, n.label)return n.to_proto()
# 调用上面的函数,将网络定义写入文件 
with open('mnist/lenet_auto_train.prototxt', 'w') as f:f.write(str(lenet('mnist/mnist_train_lmdb', 64))) with open('mnist/lenet_auto_test.prototxt', 'w') as f:f.write(str(lenet('mnist/mnist_test_lmdb', 100)))

2. 加载和检查求解器

2.1. 选择训练设备,加载求解器

caffe.set_device(0)
caffe.set_mode_gpu()### load the solver and create train and test nets
solver = None  # ignore this workaround for lmdb data (can't instantiate two solvers on the same data)
solver = caffe.SGDSolver('mnist/lenet_auto_solver.prototxt')

2.2. 检查网络的中间输出和参数的维度

# each output is (batch size, feature dim, spatial dim)
[(k, v.data.shape) for k, v in solver.net.blobs.items()]# just print the weight sizes (we'll omit the biases)
[(k, v[0].data.shape) for k, v in solver.net.params.items()]

2.3. 运行一次train & test 来检查是否正常

solver.net.forward()  # train net
solver.test_nets[0].forward()  # test net (there can be more than one)

2.4. 用一个小技巧来平铺前八张图片

# we use a little trick to tile the first eight images
imshow(solver.net.blobs['data'].data[:10, 0].transpose(1, 0, 2).reshape(28, 10*28), cmap='gray'); axis('off')
print 'train labels:', solver.net.blobs['label'].data[:10]
# 测试网络的图片
imshow(solver.test_nets[0].blobs['data'].data[:8, 0].transpose(1, 0, 2).reshape(28, 8*28), cmap='gray'); axis('off')
print 'test labels:', solver.test_nets[0].blobs['label'].data[:8]

3. 迭代求解器

  1. 迭代一次(一个minibatch):solver.step(1)
  2. 可视化conv1层20个5x5的卷积核:

    imshow(solver.net.params['conv1'][0].diff[:, 0].reshape(4, 5, 5, 5).transpose(0, 2, 1, 3).reshape(4*5, 5*5), cmap='gray'); axis('off')

4. 写一个常规训练循环

  • 记录日志
  • 迭代一段时间保存一次快照,在solver.prototxt中设置
  • 设置多长间隔测试一次

    niter = 200
    test_interval = 25# losses will also be stored in the logtrain_loss = zeros(niter)
    test_acc = zeros(int(np.ceil(niter / test_interval)))
    output = zeros((niter, 8, 10))# the main solver loopfor it in range(niter):solver.step(1)  # SGD by Caffe# store the train losstrain_loss[it] = solver.net.blobs['loss'].data# store the output on the first test batch# (start the forward pass at conv1 to avoid loading new data)solver.test_nets[0].forward(start='conv1') # 测试刚刚训练的那组数据output[it] = solver.test_nets[0].blobs['score'].data[:8]# run a full test every so often# (Caffe can also do this for us and write to a log, but we show here# how to do it directly in Python, where more complicated things are easier.)if it % test_interval == 0:print 'Iteration', it, 'testing...'correct = 0for test_it in range(100):solver.test_nets[0].forward()correct += sum(solver.test_nets[0].blobs['score'].data.argmax(1)== solver.test_nets[0].blobs['label'].data)test_acc[it // test_interval] = correct / 1e4

    注:solver.step(1)包括了三个阶段-forward,backward,update

  • 画出训练损失和测试精度

    _, ax1 = subplots()
    ax2 = ax1.twinx()
    ax1.plot(arange(niter), train_loss)
    ax2.plot(test_interval * arange(len(test_acc)), test_acc, 'r')
    ax1.set_xlabel('iteration')
    ax1.set_ylabel('train loss')
    ax2.set_ylabel('test accuracy')
    ax2.set_title('Test Accuracy: {:.2f}'.format(test_acc[-1]))
  • 查看预测分数的演化
    将每次迭代保存的训练batch中的前八张图片的分数打印出来,X轴为迭代次数,Y轴为对应标签。

    for i in range(8):
    figure(figsize=(2, 2))
    imshow(solver.test_nets[0].blobs['data'].data[i, 0], cmap='gray')
    figure(figsize=(10, 2))
    imshow(output[:50, i].T, interpolation='nearest', cmap='gray')
    xlabel('iteration')
    ylabel('label')

    前面是原始的输出分数,还可以画出经过softmax计算的概率向量,如下:

    for i in range(8):
    figure(figsize=(2, 2))
    imshow(solver.test_nets[0].blobs['data'].data[i, 0], cmap='gray')
    figure(figsize=(10, 2))
    imshow(exp(output[:50, i].T) / exp(output[:50, i].T).sum(0), interpolation='nearest', cmap='gray')
    xlabel('iteration')
    ylabel('label') 

5. 架构实验和优化


  • 定义新的架构用于对比
  • 微调基础学习率 base_lr
  • 将求解器类型从 SGD 切换到自适应方法,如 AdaDelta or Adam

其中网络的配置和上面没有太大差别,下面介绍求解器的定义。
### define solver
from caffe.proto import caffe_pb2
s = caffe_pb2.SolverParameter()# Set a seed for reproducible experiments:
# this controls for randomization in training.
s.random_seed = 0xCAFFE# Specify locations of the train and (maybe) test networks.
s.train_net = train_net_path
s.test_net.append(test_net_path)
s.test_interval = 500  # Test after every 500 training iterations.
s.test_iter.append(100) # Test on 100 batches each time we test.s.max_iter = 10000     # no. of times to update the net (training iterations)# EDIT HERE to try different solvers
# solver types include "SGD", "Adam", and "Nesterov" among others.
s.type = "SGD"# Set the initial learning rate for SGD.
s.base_lr = 0.01  # EDIT HERE to try different learning rates
# Set momentum to accelerate learning by
# taking weighted average of current and previous updates.
s.momentum = 0.9
# Set weight decay to regularize and prevent overfitting
s.weight_decay = 5e-4# Set `lr_policy` to define how the learning rate changes during training.
# This is the same policy as our default LeNet.
s.lr_policy = 'inv'
s.gamma = 0.0001
s.power = 0.75
# EDIT HERE to try the fixed rate (and compare with adaptive solvers)
# `fixed` is the simplest policy that keeps the learning rate constant.
# s.lr_policy = 'fixed'# Display the current training loss and accuracy every 1000 iterations.
s.display = 1000# Snapshots are files used to store networks we've trained.
# We'll snapshot every 5K iterations -- twice during training.
s.snapshot = 5000
s.snapshot_prefix = 'mnist/custom_net'# Train on the GPU
s.solver_mode = caffe_pb2.SolverParameter.GPU# Write the solver to a temporary file and return its filename.
with open(solver_config_path, 'w') as f:f.write(str(s))### load the solver and create train and test nets
solver = None  # ignore this workaround for lmdb data (can't instantiate two solvers on the same data)
solver = caffe.get_solver(solver_config_path)

上一篇:Caffe实战之Python接口系列(一)Classification_Visualization

下一篇:Caffe实战之Python接口系列(三)Fine-tuning a Pretrained Network