当前位置: 代码迷 >> 综合 >> 【Pytorch】torch.normal()使用
  详细解决方案

【Pytorch】torch.normal()使用

热度:74   发布时间:2023-12-11 18:53:59.0

torch.normal()

torch.normal()

torch.normal(means, std, out=None)

返回一个张量,包含从给定参数means,std的离散正态分布中抽取随机数。 均值means是一个张量,包含每个输出元素相关的正态分布的均值。 std是一个张量,包含每个输出元素相关的正态分布的标准差。 均值和标准差的形状不须匹配,但每个张量的元素个数须相同。

参数:

  • means (Tensor) – 均值
  • std (Tensor) – 标准差
  • out (Tensor) – 可选的输出张量
torch.normal(means=torch.arange(1, 11), std=torch.arange(1, 0, -0.1))1.5104
1.6955
2.4895
4.9185
4.9895
6.9155
7.3683
8.1836
8.7164
9.8916
[torch.FloatTensor of size 10]
torch.normal(mean=0.0, std, out=None)

与上面函数类似,所有抽取的样本共享均值。

参数:

  • means (Tensor,optional) – 所有分布均值
  • std (Tensor) – 每个元素的标准差
  • out (Tensor) – 可选的输出张量

例子:

torch.normal(mean=0.5, std=torch.arange(1, 6))0.57230.0871-0.3783-2.568910.7893
[torch.FloatTensor of size 5]
torch.normal(means, std=1.0, out=None)

与上面函数类似,所有抽取的样本共享标准差。

参数:

  • means (Tensor) – 每个元素的均值
  • std (float, optional) – 所有分布的标准差
  • out (Tensor) – 可选的输出张量

例子:

>>> torch.normal(means=torch.arange(1, 6))1.16812.88843.77182.56164.2500
[torch.FloatTensor of size 5]
  相关解决方案