题目链接:
HDU 3923 Invoker
题意:
t 种颜色来涂
分析:
模版题。需要注意最后需要除以 2n ,又因为结果 ,可以用费马小定理,相当于乘以 quick_pow(2?n,1000000005).
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <climits>
#include <cmath>
#include <ctime>
#include <cassert>
#define IOS ios_base::sync_with_stdio(0); cin.tie(0);
using namespace std;
typedef long long ll;
const ll mod = (ll)(1e9) + 7;
const int MAX_N = 10010;ll POW[MAX_N];int gcd(int x, int y)
{return y == 0 ? x : gcd(y, x % y);
}ll qucik_pow(ll x, ll y)
{ll res = 1, tmp = x;while(y) {if(y & 1) res = res * tmp % mod;tmp = tmp * tmp % mod;y >>= 1;}return res;
}int main()
{int n, t, T, cases = 0;scanf("%d", &T);while(T--) {scanf("%d%d", &t, &n);POW[0] = 1;for(int i = 1; i <= n; ++i) POW[i] = POW[i - 1] * t % mod;ll a = 0, b = 0;for(int i = 0; i < n; ++i) {a = ( a + POW[gcd(i, n)]) % mod;}if(n % 2) b = n * POW[(n + 1) / 2] % mod;else b = n / 2 * (POW[n / 2 + 1] + POW[n / 2]) % mod;ll tmp = qucik_pow(2 * n, mod - 2);printf("Case #%d: %lld\n", ++cases, (a + b) * tmp % mod);}return 0;
}