当前位置: 代码迷 >> 综合 >> poj3624Charm Bracelet
  详细解决方案

poj3624Charm Bracelet

热度:65   发布时间:2023-12-07 01:03:11.0
Description

Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).

Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di

Output

* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints

Sample Input

4 6
1 4
2 6
3 12
2 7
Sample Output

23

分析:这是一个最简单问题0---1问题

#include<iostream>
#include<stdio.h>
#include<math.h>
#include<string.h>
#define N 18000
using namespace std;
int v[N],w[N];
int dp[N];
int main()
{int n,m;while(cin>>n>>m){memset(dp,0,sizeof(dp));for(int i=1;i<=n;i++)cin>>w[i]>>v[i];for(int i=1;i<=n;i++)for(int j=m;j>=w[i];j--)dp[j]=max(dp[j],dp[j-w[i]]+v[i]);cout<<dp[m]<<endl;}return 0;}