当前位置: 代码迷 >> 综合 >> stl全排列 qsort+next_permutation(a,a+n) --全排列
  详细解决方案

stl全排列 qsort+next_permutation(a,a+n) --全排列

热度:73   发布时间:2023-12-07 00:49:55.0

s="abcd";next_permutation(s,s+4);则s="abdc"

在标准库算法中,next_permutation应用在数列操作上比较广泛.这个函数可以计算一组数据的全排列.但是怎么用,原理如何,我做了简单的剖析.

首先查看stl中相关信息.
函数原型:

template<class BidirectionalIterator>
   bool next_permutation(
      BidirectionalIterator _First, 
      BidirectionalIterator _Last
   );
template<class BidirectionalIterator, class BinaryPredicate>
   bool next_permutation(
      BidirectionalIterator _First, 
      BidirectionalIterator _Last,
      BinaryPredicate _Comp
   );


两个重载函数,第二个带谓词参数_Comp,其中只带两个参数的版本,默认谓词函数为"小于".

返回值:bool类型

分析next_permutation函数执行过程:

假设数列 d1,d2,d3,d4……

范围由[first,last)标记,调用next_permutation使数列逐次增大,这个递增过程按照字典序。例如,在字母表中,abcd的下一单词排列为abdc,但是,有一关键点,如何确定这个下一排列为字典序中的next,而不是next->next->next……

若当前调用排列到达最大字典序,比如dcba,就返回false,同时重新设置该排列为最小字典序。

返回为true表示生成下一排列成功。下面着重分析此过程:

根据标记从后往前比较相邻两数据,若前者小于(默认为小于)后者,标志前者为X1(位置PX)表示将被替换,再次重后往前搜索第一个不小于X1的数据,标记为X2。交换X1,X2,然后把[PX+1,last)标记范围置逆。完成。

要点:为什么这样就可以保证得到的为最小递增。

从位置first开始原数列与新数列不同的数据位置是PX,并且新数据为X2。[PX+1,last)总是递减的,[first,PX)没有改变,因为X2>X1,所以不管X2后面怎样排列都比原数列大,反转[PX+1,last)使此子数列(递增)为最小。从而保证的新数列为原数列的字典序排列next。

明白了这个原理后,看下面例子:

int main(){
int a[] = {3,1,2};
do{
     cout << a[0] << " " << a[1] << " " << a[2] << endl;
}
while (next_permutation(a,a+3));
return 0;
}

输出:312/321         因为原数列不是从最小字典排列开始。

所以要想得到所有全排列

int a[] = {3,1,2};   change to int a[] = {1,2,3};

另外,库中另一函数prev_permutation与next_permutation相反,由原排列得到字典序中上一次最近排列。

所以

int main(){
int a[] = {3,2,1};
do{
     cout << a[0] << " " << a[1] << " " << a[2] << endl;
}
while (prev_permutation(a,a+3));
return 0;
}

才能得到123的所有排列。