1 简介
基于离散Hopfield神经网络理论,对带噪声的字母识别进行研究.根据神经网络的联想记忆功能,在考虑实际情况的条件下进行模型建立,通过MATLAB软件进行函数创建与设计实现,并对结果进行分析,同时提出应用扩展.
离散神经网络是一种单层 、输出为二值的反馈 型的网络 。假设有一个由五个神经元组成的离 散 Ho pfield 神经网络,其结构如图 1 所示。
2 部分代码
function varargout = hopfieldNetwork(varargin) % HOPFIELDNETWORK M-file for hopfieldNetwork.fig % HOPFIELDNETWORK, by itself, creates a new HOPFIELDNETWORK or raises the existing % singleton*. % % H = HOPFIELDNETWORK returns the handle to a new HOPFIELDNETWORK or the handle to % the existing singleton*. % % HOPFIELDNETWORK('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in HOPFIELDNETWORK.M with the given input arguments. % % HOPFIELDNETWORK('Property','Value',...) creates a new HOPFIELDNETWORK or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before hopfieldNetwork_OpeningFunction gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to hopfieldNetwork_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES% Copyright 2002-2003 The MathWorks, Inc.% Edit the above text to modify the response to help hopfieldNetwork% Last Modified by GUIDE v2.5 21-Jan-2007 15:45:38% Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ...'gui_Singleton', gui_Singleton, ...'gui_OpeningFcn', @hopfieldNetwork_OpeningFcn, ...'gui_OutputFcn', @hopfieldNetwork_OutputFcn, ...'gui_LayoutFcn', [] , ...'gui_Callback', []); if nargin && ischar(varargin{1})gui_State.gui_Callback = str2func(varargin{1}); endif nargout[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); elsegui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT% --- Executes just before hopfieldNetwork is made visible. function hopfieldNetwork_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to hopfieldNetwork (see VARARGIN)% Choose default command line output for hopfieldNetwork handles.output = hObject; N = str2num(get(handles.imageSize,'string')); handles.W = []; handles.hPatternsDisplay = [];% Update handles structure guidata(hObject, handles);% UIWAIT makes hopfieldNetwork wait for user response (see UIRESUME) % uiwait(handles.figure1);% --- Outputs from this function are returned to the command line. function varargout = hopfieldNetwork_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% Get default command line output from handles structure varargout{1} = handles.output;% --- Executes on button press in reset. function reset_Callback(hObject, eventdata, handles) % cleans all data and enables the change of the number of neurons usedfor n=1 : length(handles.hPatternsDisplay)delete(handles.hPatternsDisplay(n));endhandles.hPatternsDisplay = [];set(handles.imageSize,'enable','on');handles.W = [];guidata(hObject, handles);function imageSize_Callback(hObject, eventdata, handles) % hObject handle to imageSize (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)num = get(hObject,'string');n = str2num(num);if isempty(n)num = '32';set(hObject,'string',num);endif n > 32warndlg('It is strongly recomended NOT to work with networks with more then 32^2 neurons!','!! Warning !!')end% --- Executes during object creation, after setting all properties. function imageSize_CreateFcn(hObject, eventdata, handles) % hObject handle to imageSize (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called% Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispcset(hObject,'BackgroundColor','white'); elseset(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end% --- Executes on button press in loadIm. function loadIm_Callback(hObject, eventdata, handles)[fName dirName] = uigetfile('*.bmp;*.tif;*.jpg;*.tiff');if fNameset(handles.imageSize,'enable','off');cd(dirName);im = imread(fName);N = str2num(get(handles.imageSize,'string'));im = fixImage(im,N);imagesc(im,'Parent',handles.neurons);colormap('gray');end% hObject handle to run (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)function im = fixImage(im,N) % if isrgb(im) if length( size(im) ) == 3im = rgb2gray(im);endim = double(im);m = min(im(:));M = max(im(:));im = (im-m)/(M-m); %normelizing the imageim = imresize(im,[N N],'bilinear');%im = (im > 0.5)*2-1; %changing image values to -1 & 1im = (im > 0.5); %changing image values to 0 & 1% --- Executes on slider movement. function noiseAmount_Callback(hObject, eventdata, handles) % hObject handle to noiseAmount (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)percent = get(hObject,'value');percent = round(percent*100);set(handles.noisePercent,'string',num2str(percent));% Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider% --- Executes during object creation, after setting all properties. function noiseAmount_CreateFcn(hObject, eventdata, handles) % hObject handle to noiseAmount (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called% Hint: slider controls usually have a light gray background, change % 'usewhitebg' to 0 to use default. See ISPC and COMPUTER. usewhitebg = 1; if usewhitebgset(hObject,'BackgroundColor',[.9 .9 .9]); elseset(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end
3 仿真结果
4 参考文献
[1]殷璇, 王生. 基于离散Hopfield神经网络的字母识别研究[J]. 计算机与数字工程, 2011, 39(1):4.
**部分理论引用网络文献,若有侵权联系博主删除。**
5 MATLAB代码与数据下载地址
见博客主页