1 简介
本文提出了一种基于计算机视觉的复杂环境下果蔬识别方法,包括以下步骤:首先,获取待识别果蔬图像;其次,将获取到的果蔬图像进行预处理,预处理后的图像被分割为果蔬区域和背景区域;提取预处理后的果蔬图像特征,其中提取的图像特征为颜色特征和纹理特征;然后,采用自适应加权方法对果蔬特征进行融合;最后,采用最近邻分类算法对果蔬进行识别.本发明相比已有的果蔬识别系统,算法复杂度低,识别率高,具有很强的使用性,可以有效的应用于日常生活中.
2 部分代码
function varargout = untitled(varargin) % UNTITLED MATLAB code for untitled.fig % UNTITLED, by itself, creates a new UNTITLED or raises the existing % singleton*. % % H = UNTITLED returns the handle to a new UNTITLED or the handle to % the existing singleton*. % % UNTITLED('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in UNTITLED.M with the given input arguments. % % UNTITLED('Property','Value',...) creates a new UNTITLED or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before untitled_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to untitled_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES% Edit the above text to modify the response to help untitled% Last Modified by GUIDE v2.5 15-Jan-2017 01:03:42% Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ...'gui_Singleton', gui_Singleton, ...'gui_OpeningFcn', @untitled_OpeningFcn, ...'gui_OutputFcn', @untitled_OutputFcn, ...'gui_LayoutFcn', [] , ...'gui_Callback', []); if nargin && ischar(varargin{1})gui_State.gui_Callback = str2func(varargin{1}); endif nargout[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); elsegui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT% --- Executes just before untitled is made visible. function untitled_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to untitled (see VARARGIN)% Choose default command line output for untitled handles.output = hObject;% Update handles structure guidata(hObject, handles);% UIWAIT makes untitled wait for user response (see UIRESUME) % uiwait(handles.figure1);% --- Outputs from this function are returned to the command line. function varargout = untitled_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% Get default command line output from handles structure varargout{1} = handles.output;% --- Executes on button press in pushbutton3. function pushbutton3_Callback(hObject, eventdata, handles) % hObject handle to pushbutton3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global I FilledLabel HSV MeanHue Ecllipseratio Label num Premeter Area for i = 1 : numPremeter(i) = 0;end[row,col] = size(Label);for i = 1 : rowfor j = 1 : colif(Label(i,j) > 0)Premeter(Label(i,j)) = Premeter(Label(i,j)) + 1; %计算标记后的各块图形边界中像素的个数的总数endendend%计算各个图形单元的面积 FilledLabel=imfill(Label,'holes'); %填充打过标记的边界线中间围成的图形区域 for i = 1 : numArea(i) = 0; end[row,col] = size(FilledLabel); for i = 1 : rowfor j = 1 : colif(FilledLabel(i,j) > 0)Area(FilledLabel(i,j)) = Area(FilledLabel(i,j)) + 1; %通过统计像素点个数的方式来求各形状的面积endend end%计算各个图形单元的圆度 for i = 1 : num Ecllipseratio(i) = 4*pi*Area(i)/Premeter(i)^2; end%计算各个图像的颜色(色度)HSV=rgb2hsv(I); %转换为HSV,为后面的颜色元素的提取做准备[row,col] = size(FilledLabel); %统计填充后的图形中各块图形所含像素的个数的多少 MeanHue = zeros(1,num);for i = 1 : numHue = zeros(Area(i),1);nPoint = 0;for j = 1 : rowfor k = 1 : colif(FilledLabel(j,k) == i)nPoint = nPoint + 1;Hue(nPoint,1) = HSV(j,k,1);endendendHue(:,i) = sort(Hue(:,1));for j = floor(nPoint*0.1) : floor(nPoint*0.9)MeanHue(i) = MeanHue(i) + Hue(j,1);endMeanHue(i) = MeanHue(i) / (0.8*nPoint); %计算出平均的色度值end% --- Executes on button press in pushbutton4. function pushbutton4_Callback(hObject, eventdata, handles) % hObject handle to pushbutton4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global I Area FilledLabel HSV MeanHue Ecllipseratio Label num PremeterHSV=rgb2hsv(I); %转换为HSV,为后面的颜色元素的提取做准备[row,col] = size(FilledLabel); %统计填充后的图形中各块图形所含像素的个数的多少 MeanHue = zeros(1,num);for i = 1 : numHue = zeros(Area(i),1);nPoint = 0;for j = 1 : rowfor k = 1 : colif(FilledLabel(j,k) == i)nPoint = nPoint + 1;Hue(nPoint,1) = HSV(j,k,1);endendendHue(:,i) = sort(Hue(:,1));for j = floor(nPoint*0.1) : floor(nPoint*0.9)MeanHue(i) = MeanHue(i) + Hue(j,1);endMeanHue(i) = MeanHue(i) / (0.8*nPoint); %计算出平均的色度值end%识别黄瓜%构建黄瓜的分类器,在二维特征空间对各个图像进行类别区分 huanggua=0; for i=1:numif((Ecllipseratio(i)<0.7))%分类器识别黄瓜的准则:判断各个图形中平均圆率值小于0.7的为黄瓜huanggua=i;end endend %变换生成最终的结果图像,图像中显示的结果即对应分类器中指定的类别 juzimatrix = hsv2rgb(juziHSV); %转换为RGB彩图,彩图中已经滤去了其余水果,只剩下橘子 subplot(2,2,4),imshow(juzimatrix);
3 仿真结果
4 参考文献
[1]陶华伟, 赵力, 高瑞军, 黄永盛, 奚吉, & 虞玲等. 一种基于计算机视觉的复杂环境下果蔬识别方法.
部分理论引用网络文献,若有侵权联系博主删除。
5 MATLAB代码与数据下载地址
见博客主页