神经网络
1.基础知识
神经网络是由具有适应性的简单单元组成的广泛并行互连的网络
Perceptron 感知机
感知机只有两层神经元组成,而且只有输出层是M-P神经单元也就是功能神经元
反向传播算法(Back propagation)可以应用于多层前馈神经网络,还可以应用于训练递归神经网络
一般说 BP算法就是训练的多层前馈神经网络.
深度学习的基本名词
卷积神经网络(convolutional neural network CNN)
cnn复合多个 卷积层 和 采样层 来对输入信号进行加工.最终在连接层实现与输出目标之间的映射.
卷积层:包含多个特征映射,每个特征映射是一个由多个神经元构成的平面.
采样层:基于局部相关性原理进行亚采样,减少数据量的同时保留有用信息.
换个角度理解就是 用机器代替原来专家的"特征工程(feature engineering)"
神经网络的激活函数
1.logitic:典型的激活函数sigmod函数,在计算分类概率时,非常有用.
2.Tanh:
3.Relu:线性修正函数,函数的主要目的是对抗梯度消失,当梯度反向传播到第一层的时候,梯度容易趋近于0或者一个非常小的值.
卷积神经网络(CNN)
卷积:就是两个操作在时间维度上的融合.
2.思想脉络
根据训练数据集来调整神经元之间的连接权 connection weight ,以及每个功能神经元的阈值.
也就是说,神经网络所学到的东西都在连接权和阈值中.
参数的确定(利用迭代更新)调整感知机(神经网络)的权重.
ωi←ω+Δωiωi←ω+Δωi
Δωi=η(y?y^xi)Δωi=η(y?y^xi)
先将输入事例提供给输入层神经元,逐层将信号进行前传,直到产生输出层的结果
计算输出层的误差,再将误差逆向传播至隐层神经元
最后根据隐层神经元的误差来对连接权和阈值进行调整.并进行迭代循环进行.
3.算法推导
BP算法:
训练集
D={
(x1,y1),(x2,y2),...,(xm,ym)}D={(x1,y1),(x2,y2),...,(xm,ym)}
输入:d个属性
输出:l维实值向量 阈值θjθj
隐藏层:q个隐层神经元网络 阈值 γhγh
bh=f1(αh?γh)bh=f1(αh?γh)
yj=f2(βj?θj)yj=f2(βj?θj)
任意参数的更新估计式
BP算法基于梯度下降策略来进行参数的调整
知识点补充:梯度下降法(gradient descent)
梯度下降法是一种常用的一阶优化方法,是求解无约束优化问题最简单,最经典的方法之一.
f(x)是连续可微函数,且满足
则不断执行该过程可收敛到局部最小点,根据泰勒公式展开
全局最小 & 局部最小
其实整个算法是一个参数寻优的过程.找到一组最优的参数.
4.编程推导
4.1BP算法,在西瓜数据集3.0上用算法训练一个单隐层神经网络
PesudoCode:
输入:训练集学习率 过程:1.在(0,1)范围内随机初始化网络中所有的连接权值和阈值2.repeat3. for all (Xk,Yk) do4. 根据当前参数和公式,计算当前样本的输出5. 根据公式计算出输出层神经元的梯度项6. 根据公式计算隐层神经元的梯度项7. 根据公式更新连接权和阈值8. end for9. until 达到停止条件输出:连接权与阈值确定的多层前馈神经网络注意区分标准BP算法,和累积BP算法(accumulated error backpropagation)
累积BP算法:是将训练集进行读取一遍后才进行更新
标准BP算法:针对一个训练样例进行更新
# input()函数
# 将西瓜数据集3.0进行读取
def input():"""@param : none or filepath@return : dataSet,dataFrame using pandasRandom double or random.uniform()"""try:import pandas as pdexcept ImportError:print("module import error")with open('/home/dengshuo/GithubCode/ML/CH05/watermelon3.csv') as data_file:df=pd.read_csv(data_file)return df
# learningRatio()函数
# 初始化函数的学习率
def learningRatio():"""@ return : learningRatio """try:import randomexcept ImportError:print('module import error')learningRatio=random.uniform(0,1)return learningRatio
ratio=learningRatio()
print(ratio)
input()
0.8475765311660175
编号 | 色泽 | 根蒂 | 敲声 | 纹理 | 脐部 | 触感 | 密度 | 含糖率 | 好瓜 | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 青绿 | 蜷缩 | 浊响 | 清晰 | 凹陷 | 硬滑 | 0.697 | 0.460 | 是 |
1 | 2 | 乌黑 | 蜷缩 | 沉闷 | 清晰 | 凹陷 | 硬滑 | 0.774 | 0.376 | 是 |
2 | 3 | 乌黑 | 蜷缩 | 浊响 | 清晰 | 凹陷 | 硬滑 | 0.634 | 0.264 | 是 |
3 | 4 | 青绿 | 蜷缩 | 沉闷 | 清晰 | 凹陷 | 硬滑 | 0.608 | 0.318 | 是 |
4 | 5 | 浅白 | 蜷缩 | 浊响 | 清晰 | 凹陷 | 硬滑 | 0.556 | 0.215 | 是 |
5 | 6 | 青绿 | 稍蜷 | 浊响 | 清晰 | 稍凹 | 软粘 | 0.403 | 0.237 | 是 |
6 | 7 | 乌黑 | 稍蜷 | 浊响 | 稍糊 | 稍凹 | 软粘 | 0.481 | 0.149 | 是 |
7 | 8 | 乌黑 | 稍蜷 | 浊响 | 清晰 | 稍凹 | 硬滑 | 0.437 | 0.211 | 是 |
8 | 9 | 乌黑 | 稍蜷 | 沉闷 | 稍糊 | 稍凹 | 硬滑 | 0.666 | 0.091 | 否 |
9 | 10 | 青绿 | 硬挺 | 清脆 | 清晰 | 平坦 | 软粘 | 0.243 | 0.267 | 否 |
10 | 11 | 浅白 | 硬挺 | 清脆 | 模糊 | 平坦 | 硬滑 | 0.245 | 0.057 | 否 |
11 | 12 | 浅白 | 蜷缩 | 浊响 | 模糊 | 平坦 | 软粘 | 0.343 | 0.099 | 否 |
12 | 13 | 青绿 | 稍蜷 | 浊响 | 稍糊 | 凹陷 | 硬滑 | 0.639 | 0.161 | 否 |
13 | 14 | 浅白 | 稍蜷 | 沉闷 | 稍糊 | 凹陷 | 硬滑 | 0.657 | 0.198 | 否 |
14 | 15 | 乌黑 | 稍蜷 | 浊响 | 清晰 | 稍凹 | 软粘 | 0.360 | 0.370 | 否 |
15 | 16 | 浅白 | 蜷缩 | 浊响 | 模糊 | 平坦 | 硬滑 | 0.593 | 0.042 | 否 |
16 | 17 | 青绿 | 蜷缩 | 沉闷 | 稍糊 | 稍凹 | 硬滑 | 0.719 | 0.103 | 否 |
17 | 18 | 青绿 | 蜷缩 | 浊响 | 清晰 | 凹陷 | 硬滑 | 0.697 | 0.460 | NaN |
# outputlayer() 函数
# 计算函数输出层的输出值Yk
def outputlayer(df):"""@param df: the dataframe of pandas@return Yk:the output """
# 复杂的参数让人头疼
# define class()
# define the neural networks structure,创建整个算法的框架
''' the definition of BP network class '''
class BP_network: def __init__(self):'''initial variables'''# node number each layerself.i_n = 0 self.h_n = 0 self.o_n = 0# output value for each layerself.i_v = [] self.h_v = []self.o_v = []# parameters (w, t)self.ih_w = [] # weight for each linkself.ho_w = []self.h_t = [] # threshold for each neuronself.o_t = []# definition of alternative activation functions and it's derivationself.fun = {'Sigmoid': Sigmoid, # 对数几率函数'SigmoidDerivate': SigmoidDerivate,'Tanh': Tanh, # 双曲正切函数'TanhDerivate': TanhDerivate,}
'Sigmoid': Sigmoid, # 对数几率函数^
SyntaxError: invalid character in identifier
# CreateNN() 函数
# 将架构进行填充def CreateNN(self, ni, nh, no, actfun):'''build a BP network structure and initial parameters@param ni, nh, no: the neuron number of each layer@param actfun: string, the name of activation function'''# import module packagesimport numpy as np import random# assignment of node number# 对每层的结点树的输入值进行赋值self.i_n = niself.h_n = nhself.o_n = no# initial value of output for each layerself.i_v = np.zeros(self.i_n)self.h_v = np.zeros(self.h_n)self.o_v = np.zeros(self.o_n)# initial weights for each link (random initialization)self.ih_w = np.zeros([self.i_n, self.h_n])self.ho_w = np.zeros([self.h_n, self.o_n])# 利用循环来对权值进行赋值for i in range(self.i_n): for h in range(self.h_n): self.ih_w[i][h] = rand(0,1)# float(0,1) # 调用rand()函数for h in range(self.h_n): for j in range(self.o_n): self.ho_w[h][j] = rand(0,1)# initial threshold for each neuronself.h_t = np.zeros(self.h_n)self.o_t = np.zeros(self.o_n)for h in range(self.h_n): self.h_t[h] = rand(0,1)for j in range(self.o_n): self.o_t[j] = rand(0,1)# initial activation function# 这个不调库能直接用?不是很理解self.af = self.fun[actfun]self.afd = self.fun[actfun+'Derivate']
# 随机取值函数的定义
''' the definition of random function '''
def rand(a, b):'''random value generation for parameter initialization@param a,b: the upper and lower limitation of the random value'''from random import randomreturn (b - a) * random() + a
# define th need functions
# 一些激活函数
''' the definition of activation functions '''
def Sigmoid(x):'''definition of sigmoid function and it's derivation'''from math import expreturn 1.0 / (1.0 + exp(-x))
def SigmoidDerivate(y):return y * (1 - y)def Tanh(x):'''definition of sigmoid function and it's derivation'''from math import tanhreturn tanh(x)
def TanhDerivate(y):return 1 - y*y
# predict process through the network
# 计算一个输出def Pred(self, x):'''@param x: the input array for input layer'''# activate input layerfor i in range(self.i_n):self.i_v[i] = x[i]# activate hidden layerfor h in range(self.h_n):total = 0.0for i in range(self.i_n):total += self.i_v[i] * self.ih_w[i][h]self.h_v[h] = self.af(total - self.h_t[h])# activate output layerfor j in range(self.o_n):total = 0.0for h in range(self.h_n):total += self.h_v[h] * self.ho_w[h][j]self.o_v[j] = self.af(total - self.o_t[j])
**还有一个问题就是,已经读取的西瓜数据,该以什么样的形式来进行输入
西瓜数据集的离散性变量该如何处理 例如:色泽{青緑,乌黑,浅白}={0,1,2} ??
如何不是这样,怎么实现离散性变量的计算?**
# the implementation of BP algorithms on one slide of sample
# backPropagate() 函数
# 后向传播函数,进行计算def BackPropagate(self, x, y, lr):'''@param x, y: array, input and output of the data sample@param lr: float, the learning rate of gradient decent iteration'''# import need module packagesimport numpy as np # get current network outputself.Pred(x)# calculate the gradient based on outputo_grid = np.zeros(self.o_n) for j in range(self.o_n):# 输出层的神经元梯度项,参考西瓜书 5.3 公式(5.10)o_grid[j] = (y[j] - self.o_v[j]) * self.afd(self.o_v[j])# 这个self.afd()函数就相当于yk(1-yk)# caculate the gradient of hidden layer# 计算隐藏层的梯度项Ehh_grid = np.zeros(self.h_n)for h in range(self.h_n):for j in range(self.o_n):h_grid[h] += self.ho_w[h][j] * o_grid[j]h_grid[h] = h_grid[h] * self.afd(self.h_v[h]) # self.afd()函数就是 Bh(1-Bh)# updating the parameter# 将参数进行更新for h in range(self.h_n): for j in range(self.o_n): # 更新公式self.ho_w[h][j] += lr * o_grid[j] * self.h_v[h]for i in range(self.i_n): for h in range(self.h_n): self.ih_w[i][h] += lr * h_grid[h] * self.i_v[i] for j in range(self.o_n):self.o_t[j] -= lr * o_grid[j] for h in range(self.h_n):self.h_t[h] -= lr * h_grid[h]
# define TrainStandard() 函数
# 标准的BP函数,计算累积误差def TrainStandard(self, data_in, data_out, lr=0.05):'''@param lr, learning rate, default 0.05@param data_in :the networks input data@param data_out:the output data of output layer@return: e, accumulated error@return: e_k, error array of each step''' e_k = []for k in range(len(data_in)):x = data_in[k]y = data_out[k]self.BackPropagate(x, y, lr)# error in train set for each step# 计算均方误差y_delta2 = 0.0for j in range(self.o_n):y_delta2 += (self.o_v[j] - y[j]) * (self.o_v[j] - y[j]) e_k.append(y_delta2/2)# total error of training# 先计算出累积误差,然后最小化累积误差e = sum(e_k)/len(e_k)return e, e_k
# 返回预测的标签,好瓜是1,坏瓜是0
def PredLabel(self, X):'''predict process through the network@param X: the input sample set for input layer@return: y, array, output set (0,1 - class) based on [winner-takes-all] 也就是竞争学习,胜者通吃''' import numpy as npy = []for m in range(len(X)):self.Pred(X[m])if self.o_v[0] > 0.5: y.append(1)else : y.append(0)
# max_y = self.o_v[0]
# label = 0
# for j in range(1,self.o_n):
# if max_y < self.o_v[j]: label = j
# y.append(label)return np.array(y)
4.2 利用tensorflow 来实现BP算法
先学习如何实现BP算法
汽车燃油效率建模,一个非线性回归.建立一个多变量输入,单变量输出的前向神经网络
1.数据集的描述和加载
这个数据集是一个著名的,标准的输入数据集.这是一个非常简单的例子,主要还是理解其主要的步骤和方法.
因为这个数据集是标准封装好的数据集,不需要进行详细的数据分析.
一般情况下,数据集会进行可视化处理和详细的数据分析.
2.数据的预处理
一般情况下的预处理也是利用sklearn包中的函数进行直接调用处理.
Sklearn中的Pre-Processing模块
sklearn.preprocessing.StandardScaler
# Standardize features by removing the mean and scaling to unit variance
scaler=preprocessing.StandardScaler()
X_train=scaler.fit_transform(X_train)
这是我现阶段认为进行算法分析最难,也是最不容易操作的地方 就是将数据进行处理,满足算法分析的要求. 一般情况下都是数据进行处理,满足输入的条件 向算法靠拢 有没有根据数据,算法向数据靠拢的,是不是就是一开始的算法选择问题?
3.模型架构
多输入,双隐层,单输出的前向神经网络
七个输入结点,第一隐藏层10,第二隐藏层5,一个输出结点.
不过这个比较简单,可直接利用tensorflow中skflow库来直接调取,skflow库的学习
4.准确度测试
利用均方误差来监测准确度.
还是sklearn.metrics 模型的性能度量.
这个例子不需要进行参数的更新? 主要还是损失函数的优化,本例中没有体现.
score=metrics.mean_squared_error(regressor.predict(scaler.transform(X_test)),y_test)
print("Total mean squared error :".format(score))
上述代码进行汇总,步骤进行合成
完整的源代码
from sklearn import datasets,cross_validation,metrics
from sklearn import preprocessing
from tensorflow.contrib import learn
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
%config InlineBackend.figure_format='svg'
from keras.models import Sequential
from keras.layers import Dense
read the original dataset with pandas packages
df=pd.read_csv('mpg.csv',header=0)
df
mpg | cylinders | displacement | horsepower | weight | acceleration | model_year | origin | name | |
---|---|---|---|---|---|---|---|---|---|
0 | 18.0 | 8 | 307.0 | 130 | 3504 | 12.0 | 70 | 1 | chevrolet chevelle malibu |
1 | 15.0 | 8 | 350.0 | 165 | 3693 | 11.5 | 70 | 1 | buick skylark 320 |
2 | 18.0 | 8 | 318.0 | 150 | 3436 | 11.0 | 70 | 1 | plymouth satellite |
3 | 16.0 | 8 | 304.0 | 150 | 3433 | 12.0 | 70 | 1 | amc rebel sst |
4 | 17.0 | 8 | 302.0 | 140 | 3449 | 10.5 | 70 | 1 | ford torino |
5 | 15.0 | 8 | 429.0 | 198 | 4341 | 10.0 | 70 | 1 | ford galaxie 500 |
6 | 14.0 | 8 | 454.0 | 220 | 4354 | 9.0 | 70 | 1 | chevrolet impala |
7 | 14.0 | 8 | 440.0 | 215 | 4312 | 8.5 | 70 | 1 | plymouth fury iii |
8 | 14.0 | 8 | 455.0 | 225 | 4425 | 10.0 | 70 | 1 | pontiac catalina |
9 | 15.0 | 8 | 390.0 | 190 | 3850 | 8.5 | 70 | 1 | amc ambassador dpl |
10 | 15.0 | 8 | 383.0 | 170 | 3563 | 10.0 | 70 | 1 | dodge challenger se |
11 | 14.0 | 8 | 340.0 | 160 | 3609 | 8.0 | 70 | 1 | plymouth ‘cuda 340 |
12 | 15.0 | 8 | 400.0 | 150 | 3761 | 9.5 | 70 | 1 | chevrolet monte carlo |
13 | 14.0 | 8 | 455.0 | 225 | 3086 | 10.0 | 70 | 1 | buick estate wagon (sw) |
14 | 24.0 | 4 | 113.0 | 95 | 2372 | 15.0 | 70 | 3 | toyota corona mark ii |
15 | 22.0 | 6 | 198.0 | 95 | 2833 | 15.5 | 70 | 1 | plymouth duster |
16 | 18.0 | 6 | 199.0 | 97 | 2774 | 15.5 | 70 | 1 | amc hornet |
17 | 21.0 | 6 | 200.0 | 85 | 2587 | 16.0 | 70 | 1 | ford maverick |
18 | 27.0 | 4 | 97.0 | 88 | 2130 | 14.5 | 70 | 3 | datsun pl510 |
19 | 26.0 | 4 | 97.0 | 46 | 1835 | 20.5 | 70 | 2 | volkswagen 1131 deluxe sedan |
20 | 25.0 | 4 | 110.0 | 87 | 2672 | 17.5 | 70 | 2 | peugeot 504 |
21 | 24.0 | 4 | 107.0 | 90 | 2430 | 14.5 | 70 | 2 | audi 100 ls |
22 | 25.0 | 4 | 104.0 | 95 | 2375 | 17.5 | 70 | 2 | saab 99e |
23 | 26.0 | 4 | 121.0 | 113 | 2234 | 12.5 | 70 | 2 | bmw 2002 |
24 | 21.0 | 6 | 199.0 | 90 | 2648 | 15.0 | 70 | 1 | amc gremlin |
25 | 10.0 | 8 | 360.0 | 215 | 4615 | 14.0 | 70 | 1 | ford f250 |
26 | 10.0 | 8 | 307.0 | 200 | 4376 | 15.0 | 70 | 1 | chevy c20 |
27 | 11.0 | 8 | 318.0 | 210 | 4382 | 13.5 | 70 | 1 | dodge d200 |
28 | 9.0 | 8 | 304.0 | 193 | 4732 | 18.5 | 70 | 1 | hi 1200d |
29 | 27.0 | 4 | 97.0 | 88 | 2130 | 14.5 | 71 | 3 | datsun pl510 |
… | … | … | … | … | … | … | … | … | … |
368 | 27.0 | 4 | 112.0 | 88 | 2640 | 18.6 | 82 | 1 | chevrolet cavalier wagon |
369 | 34.0 | 4 | 112.0 | 88 | 2395 | 18.0 | 82 | 1 | chevrolet cavalier 2-door |
370 | 31.0 | 4 | 112.0 | 85 | 2575 | 16.2 | 82 | 1 | pontiac j2000 se hatchback |
371 | 29.0 | 4 | 135.0 | 84 | 2525 | 16.0 | 82 | 1 | dodge aries se |
372 | 27.0 | 4 | 151.0 | 90 | 2735 | 18.0 | 82 | 1 | pontiac phoenix |
373 | 24.0 | 4 | 140.0 | 92 | 2865 | 16.4 | 82 | 1 | ford fairmont futura |
374 | 23.0 | 4 | 151.0 | 0 | 3035 | 20.5 | 82 | 1 | amc concord dl |
375 | 36.0 | 4 | 105.0 | 74 | 1980 | 15.3 | 82 | 2 | volkswagen rabbit l |
376 | 37.0 | 4 | 91.0 | 68 | 2025 | 18.2 | 82 | 3 | mazda glc custom l |
377 | 31.0 | 4 | 91.0 | 68 | 1970 | 17.6 | 82 | 3 | mazda glc custom |
378 | 38.0 | 4 | 105.0 | 63 | 2125 | 14.7 | 82 | 1 | plymouth horizon miser |
379 | 36.0 | 4 | 98.0 | 70 | 2125 | 17.3 | 82 | 1 | mercury lynx l |
380 | 36.0 | 4 | 120.0 | 88 | 2160 | 14.5 | 82 | 3 | nissan stanza xe |
381 | 36.0 | 4 | 107.0 | 75 | 2205 | 14.5 | 82 | 3 | honda accord |
382 | 34.0 | 4 | 108.0 | 70 | 2245 | 16.9 | 82 | 3 | toyota corolla |
383 | 38.0 | 4 | 91.0 | 67 | 1965 | 15.0 | 82 | 3 | honda civic |
384 | 32.0 | 4 | 91.0 | 67 | 1965 | 15.7 | 82 | 3 | honda civic (auto) |
385 | 38.0 | 4 | 91.0 | 67 | 1995 | 16.2 | 82 | 3 | datsun 310 gx |
386 | 25.0 | 6 | 181.0 | 110 | 2945 | 16.4 | 82 | 1 | buick century limited |
387 | 38.0 | 6 | 262.0 | 85 | 3015 | 17.0 | 82 | 1 | oldsmobile cutlass ciera (diesel) |
388 | 26.0 | 4 | 156.0 | 92 | 2585 | 14.5 | 82 | 1 | chrysler lebaron medallion |
389 | 22.0 | 6 | 232.0 | 112 | 2835 | 14.7 | 82 | 1 | ford granada l |
390 | 32.0 | 4 | 144.0 | 96 | 2665 | 13.9 | 82 | 3 | toyota celica gt |
391 | 36.0 | 4 | 135.0 | 84 | 2370 | 13.0 | 82 | 1 | dodge charger 2.2 |
392 | 27.0 | 4 | 151.0 | 90 | 2950 | 17.3 | 82 | 1 | chevrolet camaro |
393 | 27.0 | 4 | 140.0 | 86 | 2790 | 15.6 | 82 | 1 | ford mustang gl |
394 | 44.0 | 4 | 97.0 | 52 | 2130 | 24.6 | 82 | 2 | vw pickup |
395 | 32.0 | 4 | 135.0 | 84 | 2295 | 11.6 | 82 | 1 | dodge rampage |
396 | 28.0 | 4 | 120.0 | 79 | 2625 | 18.6 | 82 | 1 | ford ranger |
397 | 31.0 | 4 | 119.0 | 82 | 2720 | 19.4 | 82 | 1 | chevy s-10 |
398 rows × 9 columns
# convert the displacement column as float
df['displacement']=df['displacement'].astype(float)
# we got the data columns from the dataset
# first and last (mpg and car names )are ignored for X
X=df[df.columns[1:8]]
y=df['mpg']
plt.figure()
f,ax1=plt.subplots()
for i in range (1,8):number=420+iax1.locator_params(nbins=3)ax1=plt.subplot(number) # 4rows x 2 columnsplt.title(list(df)[i])ax1.scatter(df[df.columns[i]],y) # plot a scatter draw of the datapoints
plt.tight_layout(pad=0.4,w_pad=0.5,h_pad=1.0)
plt.show()
<matplotlib.figure.Figure at 0x7f37680ad9b0>
# split the datasets
X_train,X_test,y_train,y_test=cross_validation.train_test_split(X,y,test_size=0.25)
# Scale the data for convergency optimization
scaler=preprocessing.StandardScaler()
# set the transform parameters
X_train=scaler.fit_transform(X_train)
# bulid a 2 layer fully connected DNN with 10 and 5 units respectively
model=Sequential()
model.add(Dense(10,input_dim=7,init='normal',activation='relu'))
model.add(Dense(5,init='normal',activation='relu'))
model.add(Dense(1,init='normal'))
# compile the model ,with the mean squared error as lost function
model.compile(loss='mean_squared_error',optimizer='adam')
# fit the model in 1000 epochs
model.fit(X_train,y_train,nb_epoch=1000,validation_split=0.33,shuffle=True,verbose=2)
/home/dengshuo/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:9: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(10, input_dim=7, activation="relu", kernel_initializer="normal")`if __name__ == '__main__':
/home/dengshuo/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:10: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(5, activation="relu", kernel_initializer="normal")`# Remove the CWD from sys.path while we load stuff.
/home/dengshuo/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:11: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(1, kernel_initializer="normal")`# This is added back by InteractiveShellApp.init_path()
/home/dengshuo/anaconda3/lib/python3.6/site-packages/keras/models.py:942: UserWarning: The `nb_epoch` argument in `fit` has been renamed `epochs`.warnings.warn('The `nb_epoch` argument in `fit` 'Train on 199 samples, validate on 99 samples
Epoch 1/1000- 2s - loss: 617.0525 - val_loss: 609.8485
Epoch 2/1000- 0s - loss: 616.6131 - val_loss: 609.3912
Epoch 3/1000- 0s - loss: 616.1424 - val_loss: 608.8852
Epoch 4/1000- 0s - loss: 615.6107 - val_loss: 608.3354
Epoch 5/1000- 0s - loss: 615.0266 - val_loss: 607.7320
Epoch 6/1000- 0s - loss: 614.3773 - val_loss: 607.0590
Epoch 7/1000- 0s - loss: 613.6486 - val_loss: 606.3037
Epoch 8/1000- 0s - loss: 612.8283 - val_loss: 605.4522
Epoch 9/1000- 0s - loss: 611.8745 - val_loss: 604.4926
Epoch 10/1000- 0s - loss: 610.7958 - val_loss: 603.3850
Epoch 11/1000- 0s - loss: 609.5498 - val_loss: 602.1220
Epoch 12/1000- 0s - loss: 608.1130 - val_loss: 600.6591
Epoch 13/1000- 0s - loss: 606.4227 - val_loss: 598.9324
Epoch 14/1000- 0s - loss: 604.4313 - val_loss: 596.8759
Epoch 15/1000- 0s - loss: 602.0180 - val_loss: 594.4553
Epoch 16/1000- 0s - loss: 599.1613 - val_loss: 591.6023
Epoch 17/1000- 0s - loss: 595.7963 - val_loss: 588.2477
Epoch 18/1000- 0s - loss: 591.8821 - val_loss: 584.3730
Epoch 19/1000- 0s - loss: 587.3363 - val_loss: 579.9527
Epoch 20/1000- 0s - loss: 582.2015 - val_loss: 574.9615
Epoch 21/1000- 0s - loss: 576.3398 - val_loss: 569.3963
Epoch 22/1000- 0s - loss: 569.9582 - val_loss: 563.1732
Epoch 23/1000- 0s - loss: 562.7825 - val_loss: 556.2878
Epoch 24/1000- 0s - loss: 554.7562 - val_loss: 548.6833
Epoch 25/1000- 0s - loss: 546.1809 - val_loss: 540.2465
Epoch 26/1000- 0s - loss: 536.4419 - val_loss: 531.0525
Epoch 27/1000- 0s - loss: 526.0052 - val_loss: 520.9966
Epoch 28/1000- 0s - loss: 514.7750 - val_loss: 510.2122
Epoch 29/1000- 0s - loss: 502.7272 - val_loss: 498.7851
Epoch 30/1000- 0s - loss: 490.0853 - val_loss: 486.8276
Epoch 31/1000- 0s - loss: 476.8980 - val_loss: 474.1135
Epoch 32/1000- 0s - loss: 462.9080 - val_loss: 460.7899
Epoch 33/1000- 0s - loss: 448.4536 - val_loss: 446.8199
Epoch 34/1000- 0s - loss: 433.3823 - val_loss: 432.3523
Epoch 35/1000- 0s - loss: 418.0738 - val_loss: 417.2292
Epoch 36/1000- 0s - loss: 402.1995 - val_loss: 401.9204
Epoch 37/1000- 0s - loss: 386.2957 - val_loss: 386.1704
Epoch 38/1000- 0s - loss: 370.0512 - val_loss: 370.3389
Epoch 39/1000- 0s - loss: 353.8821 - val_loss: 354.4465
Epoch 40/1000- 0s - loss: 337.5520 - val_loss: 338.3667
Epoch 41/1000- 0s - loss: 321.7167 - val_loss: 322.2394
Epoch 42/1000- 0s - loss: 305.6882 - val_loss: 306.7727
Epoch 43/1000- 0s - loss: 290.3743 - val_loss: 291.2963
Epoch 44/1000- 0s - loss: 274.6336 - val_loss: 276.1515
Epoch 45/1000- 0s - loss: 260.0990 - val_loss: 260.5089
Epoch 46/1000- 0s - loss: 244.4121 - val_loss: 245.3027
Epoch 47/1000- 0s - loss: 229.9722 - val_loss: 230.5114
Epoch 48/1000- 0s - loss: 215.3382 - val_loss: 216.6434
Epoch 49/1000- 0s - loss: 201.7503 - val_loss: 202.7701
Epoch 50/1000- 0s - loss: 188.0539 - val_loss: 189.3396
Epoch 51/1000- 0s - loss: 175.2160 - val_loss: 176.7564
Epoch 52/1000- 0s - loss: 162.8866 - val_loss: 164.4597
Epoch 53/1000- 0s - loss: 150.6437 - val_loss: 152.4301
Epoch 54/1000- 0s - loss: 138.7317 - val_loss: 141.0687
Epoch 55/1000- 0s - loss: 128.0692 - val_loss: 130.5078
Epoch 56/1000- 0s - loss: 117.6397 - val_loss: 120.8894
Epoch 57/1000- 0s - loss: 108.0638 - val_loss: 111.7026
Epoch 58/1000- 0s - loss: 99.0284 - val_loss: 103.0330
Epoch 59/1000- 0s - loss: 90.9092 - val_loss: 94.9790
Epoch 60/1000- 0s - loss: 83.2111 - val_loss: 87.5625
Epoch 61/1000- 0s - loss: 76.3767 - val_loss: 80.9372
Epoch 62/1000- 0s - loss: 70.2027 - val_loss: 74.9560
Epoch 63/1000- 0s - loss: 64.6454 - val_loss: 69.5457
Epoch 64/1000- 0s - loss: 59.6377 - val_loss: 64.7154
Epoch 65/1000- 0s - loss: 55.5105 - val_loss: 60.4849
Epoch 66/1000- 0s - loss: 51.8513 - val_loss: 56.9362
Epoch 67/1000- 0s - loss: 48.8381 - val_loss: 53.8420
Epoch 68/1000- 0s - loss: 46.1866 - val_loss: 50.9441
Epoch 69/1000- 0s - loss: 43.8884 - val_loss: 48.5729
Epoch 70/1000- 0s - loss: 41.9503 - val_loss: 46.5152
Epoch 71/1000- 0s - loss: 40.3024 - val_loss: 44.6339
Epoch 72/1000- 0s - loss: 38.8108 - val_loss: 42.9484
Epoch 73/1000- 0s - loss: 37.4980 - val_loss: 41.6013
Epoch 74/1000- 0s - loss: 36.3590 - val_loss: 40.3587
Epoch 75/1000- 0s - loss: 35.3350 - val_loss: 39.2768
Epoch 76/1000- 0s - loss: 34.4340 - val_loss: 38.2934
Epoch 77/1000- 0s - loss: 33.6276 - val_loss: 37.3137
Epoch 78/1000- 0s - loss: 32.8748 - val_loss: 36.3290
Epoch 79/1000- 0s - loss: 32.0255 - val_loss: 35.4493
Epoch 80/1000- 0s - loss: 31.3205 - val_loss: 34.5893
Epoch 81/1000- 0s - loss: 30.6487 - val_loss: 33.7526
Epoch 82/1000- 0s - loss: 29.9475 - val_loss: 32.9104
Epoch 83/1000- 0s - loss: 29.3175 - val_loss: 32.2003
Epoch 84/1000- 0s - loss: 28.7810 - val_loss: 31.5495
Epoch 85/1000- 0s - loss: 28.2781 - val_loss: 30.9045
Epoch 86/1000- 0s - loss: 27.7526 - val_loss: 30.3547
Epoch 87/1000- 0s - loss: 27.3363 - val_loss: 29.7988
Epoch 88/1000- 0s - loss: 26.8700 - val_loss: 29.3264
Epoch 89/1000- 0s - loss: 26.4615 - val_loss: 28.8264
Epoch 90/1000- 0s - loss: 26.0341 - val_loss: 28.3602
Epoch 91/1000- 0s - loss: 25.6106 - val_loss: 27.8731
Epoch 92/1000- 0s - loss: 25.1837 - val_loss: 27.4386
Epoch 93/1000- 0s - loss: 24.8266 - val_loss: 27.0420
Epoch 94/1000- 0s - loss: 24.4566 - val_loss: 26.6196
Epoch 95/1000- 0s - loss: 24.1025 - val_loss: 26.2527
Epoch 96/1000- 0s - loss: 23.7909 - val_loss: 25.8848
Epoch 97/1000- 0s - loss: 23.4538 - val_loss: 25.4576
Epoch 98/1000- 0s - loss: 23.1632 - val_loss: 25.0269
Epoch 99/1000- 0s - loss: 22.8261 - val_loss: 24.6789
Epoch 100/1000- 0s - loss: 22.5293 - val_loss: 24.3329
Epoch 101/1000- 0s - loss: 22.2390 - val_loss: 23.9914
Epoch 102/1000- 0s - loss: 21.9891 - val_loss: 23.6331
Epoch 103/1000- 0s - loss: 21.6775 - val_loss: 23.3320
Epoch 104/1000- 0s - loss: 21.4248 - val_loss: 23.0086
Epoch 105/1000- 0s - loss: 21.1751 - val_loss: 22.7298
Epoch 106/1000- 0s - loss: 20.9343 - val_loss: 22.4775
Epoch 107/1000- 0s - loss: 20.7016 - val_loss: 22.2347
Epoch 108/1000- 0s - loss: 20.4750 - val_loss: 22.0151
Epoch 109/1000- 0s - loss: 20.2166 - val_loss: 21.7921
Epoch 110/1000- 0s - loss: 20.0007 - val_loss: 21.5739
Epoch 111/1000- 0s - loss: 19.7949 - val_loss: 21.3669
Epoch 112/1000- 0s - loss: 19.6167 - val_loss: 21.1766
Epoch 113/1000- 0s - loss: 19.4121 - val_loss: 20.9885
Epoch 114/1000- 0s - loss: 19.2317 - val_loss: 20.8055
Epoch 115/1000- 0s - loss: 19.0297 - val_loss: 20.6317
Epoch 116/1000- 0s - loss: 18.8320 - val_loss: 20.4374
Epoch 117/1000- 0s - loss: 18.6675 - val_loss: 20.2452
Epoch 118/1000- 0s - loss: 18.4886 - val_loss: 20.0742
Epoch 119/1000- 0s - loss: 18.3178 - val_loss: 19.8894
Epoch 120/1000- 0s - loss: 18.1269 - val_loss: 19.7274
Epoch 121/1000- 0s - loss: 17.9846 - val_loss: 19.5575
Epoch 122/1000- 0s - loss: 17.8375 - val_loss: 19.3942
Epoch 123/1000- 0s - loss: 17.7009 - val_loss: 19.2003
Epoch 124/1000- 0s - loss: 17.5455 - val_loss: 19.0089
Epoch 125/1000- 0s - loss: 17.3967 - val_loss: 18.8835
Epoch 126/1000- 0s - loss: 17.2403 - val_loss: 18.7437
Epoch 127/1000- 0s - loss: 17.1088 - val_loss: 18.6076
Epoch 128/1000- 0s - loss: 16.9629 - val_loss: 18.4918
Epoch 129/1000- 0s - loss: 16.8295 - val_loss: 18.3914
Epoch 130/1000- 0s - loss: 16.7112 - val_loss: 18.2824
Epoch 131/1000- 0s - loss: 16.5754 - val_loss: 18.1041
Epoch 132/1000- 0s - loss: 16.4591 - val_loss: 17.9973
Epoch 133/1000- 0s - loss: 16.3635 - val_loss: 17.9189
Epoch 134/1000- 0s - loss: 16.2536 - val_loss: 17.8277
Epoch 135/1000- 0s - loss: 16.1516 - val_loss: 17.7355
Epoch 136/1000- 0s - loss: 16.0301 - val_loss: 17.6537
Epoch 137/1000- 0s - loss: 15.9451 - val_loss: 17.5409
Epoch 138/1000- 0s - loss: 15.8338 - val_loss: 17.4210
Epoch 139/1000- 0s - loss: 15.7295 - val_loss: 17.2850
Epoch 140/1000- 0s - loss: 15.6222 - val_loss: 17.1313
Epoch 141/1000- 0s - loss: 15.5369 - val_loss: 17.0206
Epoch 142/1000- 0s - loss: 15.4528 - val_loss: 16.9648
Epoch 143/1000- 0s - loss: 15.3375 - val_loss: 16.8977
Epoch 144/1000- 0s - loss: 15.2482 - val_loss: 16.8180
Epoch 145/1000- 0s - loss: 15.1663 - val_loss: 16.7605
Epoch 146/1000- 0s - loss: 15.0835 - val_loss: 16.6839
Epoch 147/1000- 0s - loss: 15.0009 - val_loss: 16.5229
Epoch 148/1000- 0s - loss: 14.8867 - val_loss: 16.3582
Epoch 149/1000- 0s - loss: 14.8116 - val_loss: 16.2289
Epoch 150/1000- 0s - loss: 14.7373 - val_loss: 16.1224
Epoch 151/1000- 0s - loss: 14.6495 - val_loss: 16.0367
Epoch 152/1000- 0s - loss: 14.5806 - val_loss: 15.9549
Epoch 153/1000- 0s - loss: 14.4928 - val_loss: 15.9145
Epoch 154/1000- 0s - loss: 14.4120 - val_loss: 15.8803
Epoch 155/1000- 0s - loss: 14.3389 - val_loss: 15.8220
Epoch 156/1000- 0s - loss: 14.2723 - val_loss: 15.7868
Epoch 157/1000- 0s - loss: 14.2073 - val_loss: 15.7316
Epoch 158/1000- 0s - loss: 14.1354 - val_loss: 15.6694
Epoch 159/1000- 0s - loss: 14.0668 - val_loss: 15.6067
Epoch 160/1000- 0s - loss: 14.0027 - val_loss: 15.5436
Epoch 161/1000- 0s - loss: 13.9223 - val_loss: 15.4304
Epoch 162/1000- 0s - loss: 13.8541 - val_loss: 15.3348
Epoch 163/1000- 0s - loss: 13.7808 - val_loss: 15.2501
Epoch 164/1000- 0s - loss: 13.7212 - val_loss: 15.1992
Epoch 165/1000- 0s - loss: 13.6477 - val_loss: 15.1455
Epoch 166/1000- 0s - loss: 13.5840 - val_loss: 15.1195
Epoch 167/1000- 0s - loss: 13.5280 - val_loss: 15.0793
Epoch 168/1000- 0s - loss: 13.4747 - val_loss: 15.0325
Epoch 169/1000- 0s - loss: 13.3968 - val_loss: 14.9866
Epoch 170/1000- 0s - loss: 13.3312 - val_loss: 14.9559
Epoch 171/1000- 0s - loss: 13.2840 - val_loss: 14.9374
Epoch 172/1000- 0s - loss: 13.2239 - val_loss: 14.8995
Epoch 173/1000- 0s - loss: 13.1771 - val_loss: 14.8622
Epoch 174/1000- 0s - loss: 13.1176 - val_loss: 14.7362
Epoch 175/1000- 0s - loss: 13.0417 - val_loss: 14.6778
Epoch 176/1000- 0s - loss: 12.9914 - val_loss: 14.6371
Epoch 177/1000- 0s - loss: 12.9212 - val_loss: 14.6411
Epoch 178/1000- 0s - loss: 12.8728 - val_loss: 14.6625
Epoch 179/1000- 0s - loss: 12.8163 - val_loss: 14.6399
Epoch 180/1000- 0s - loss: 12.7509 - val_loss: 14.5569
Epoch 181/1000- 0s - loss: 12.7054 - val_loss: 14.4544
Epoch 182/1000- 0s - loss: 12.6434 - val_loss: 14.3884
Epoch 183/1000- 0s - loss: 12.5792 - val_loss: 14.3512
Epoch 184/1000- 0s - loss: 12.5281 - val_loss: 14.2796
Epoch 185/1000- 0s - loss: 12.4714 - val_loss: 14.1947
Epoch 186/1000- 0s - loss: 12.4239 - val_loss: 14.1131
Epoch 187/1000- 0s - loss: 12.3744 - val_loss: 14.0642
Epoch 188/1000- 0s - loss: 12.3246 - val_loss: 14.0554
Epoch 189/1000- 0s - loss: 12.2710 - val_loss: 14.0409
Epoch 190/1000- 0s - loss: 12.2298 - val_loss: 14.0390
Epoch 191/1000- 0s - loss: 12.1819 - val_loss: 13.9518
Epoch 192/1000- 0s - loss: 12.1095 - val_loss: 13.8871
Epoch 193/1000- 0s - loss: 12.0804 - val_loss: 13.8551
Epoch 194/1000- 0s - loss: 12.0105 - val_loss: 13.8213
Epoch 195/1000- 0s - loss: 11.9592 - val_loss: 13.7950
Epoch 196/1000- 0s - loss: 11.9199 - val_loss: 13.7670
Epoch 197/1000- 0s - loss: 11.8656 - val_loss: 13.7546
Epoch 198/1000- 0s - loss: 11.8429 - val_loss: 13.8002
Epoch 199/1000- 0s - loss: 11.8014 - val_loss: 13.7367
Epoch 200/1000- 0s - loss: 11.7764 - val_loss: 13.5915
Epoch 201/1000- 0s - loss: 11.6954 - val_loss: 13.5310
Epoch 202/1000- 0s - loss: 11.6499 - val_loss: 13.4761
Epoch 203/1000- 0s - loss: 11.6060 - val_loss: 13.4136
Epoch 204/1000- 0s - loss: 11.5599 - val_loss: 13.3795
Epoch 205/1000- 0s - loss: 11.5162 - val_loss: 13.3651
Epoch 206/1000- 0s - loss: 11.4721 - val_loss: 13.3273
Epoch 207/1000- 0s - loss: 11.4354 - val_loss: 13.2890
Epoch 208/1000- 0s - loss: 11.3894 - val_loss: 13.2485
Epoch 209/1000- 0s - loss: 11.3468 - val_loss: 13.1722
Epoch 210/1000- 0s - loss: 11.3119 - val_loss: 13.1197
Epoch 211/1000- 0s - loss: 11.2801 - val_loss: 13.0959
Epoch 212/1000- 0s - loss: 11.2280 - val_loss: 13.0467
Epoch 213/1000- 0s - loss: 11.1881 - val_loss: 13.0868
Epoch 214/1000- 0s - loss: 11.1517 - val_loss: 13.0580
Epoch 215/1000- 0s - loss: 11.1362 - val_loss: 13.0343
Epoch 216/1000- 0s - loss: 11.0843 - val_loss: 12.9752
Epoch 217/1000- 0s - loss: 11.0379 - val_loss: 12.9185
Epoch 218/1000- 0s - loss: 11.0099 - val_loss: 12.8465
Epoch 219/1000- 0s - loss: 10.9683 - val_loss: 12.7735
Epoch 220/1000- 0s - loss: 10.9387 - val_loss: 12.7777
Epoch 221/1000- 0s - loss: 10.9008 - val_loss: 12.7350
Epoch 222/1000- 0s - loss: 10.8666 - val_loss: 12.6620
Epoch 223/1000- 0s - loss: 10.8378 - val_loss: 12.6455
Epoch 224/1000- 0s - loss: 10.8080 - val_loss: 12.6011
Epoch 225/1000- 0s - loss: 10.7698 - val_loss: 12.5844
Epoch 226/1000- 0s - loss: 10.7452 - val_loss: 12.5354
Epoch 227/1000- 0s - loss: 10.7170 - val_loss: 12.5571
Epoch 228/1000- 0s - loss: 10.6799 - val_loss: 12.5185
Epoch 229/1000- 0s - loss: 10.6516 - val_loss: 12.5097
Epoch 230/1000- 0s - loss: 10.6288 - val_loss: 12.4987
Epoch 231/1000- 0s - loss: 10.6059 - val_loss: 12.4943
Epoch 232/1000- 0s - loss: 10.5655 - val_loss: 12.4339
Epoch 233/1000- 0s - loss: 10.5282 - val_loss: 12.3797
Epoch 234/1000- 0s - loss: 10.4819 - val_loss: 12.2805
Epoch 235/1000- 0s - loss: 10.4445 - val_loss: 12.1988
Epoch 236/1000- 0s - loss: 10.4292 - val_loss: 12.1352
Epoch 237/1000- 0s - loss: 10.4127 - val_loss: 12.1095
Epoch 238/1000- 0s - loss: 10.3888 - val_loss: 12.1112
Epoch 239/1000- 0s - loss: 10.3424 - val_loss: 12.0910
Epoch 240/1000- 0s - loss: 10.3149 - val_loss: 12.0497
Epoch 241/1000- 0s - loss: 10.2816 - val_loss: 12.0143
Epoch 242/1000- 0s - loss: 10.2697 - val_loss: 12.0300
Epoch 243/1000- 0s - loss: 10.2290 - val_loss: 12.0288
Epoch 244/1000- 0s - loss: 10.2026 - val_loss: 12.0396
Epoch 245/1000- 0s - loss: 10.1838 - val_loss: 12.0362
Epoch 246/1000- 0s - loss: 10.1574 - val_loss: 12.0184
Epoch 247/1000- 0s - loss: 10.1397 - val_loss: 11.9757
Epoch 248/1000- 0s - loss: 10.1170 - val_loss: 11.9405
Epoch 249/1000- 0s - loss: 10.1225 - val_loss: 11.9779
Epoch 250/1000- 0s - loss: 10.0511 - val_loss: 11.8278
Epoch 251/1000- 0s - loss: 10.0240 - val_loss: 11.7634
Epoch 252/1000- 0s - loss: 10.0226 - val_loss: 11.7333
Epoch 253/1000- 0s - loss: 9.9874 - val_loss: 11.7427
Epoch 254/1000- 0s - loss: 9.9643 - val_loss: 11.7390
Epoch 255/1000- 0s - loss: 9.9444 - val_loss: 11.7894
Epoch 256/1000- 0s - loss: 9.9192 - val_loss: 11.8064
Epoch 257/1000- 0s - loss: 9.8962 - val_loss: 11.7924
Epoch 258/1000- 0s - loss: 9.8771 - val_loss: 11.7952
Epoch 259/1000- 0s - loss: 9.8646 - val_loss: 11.7574
Epoch 260/1000- 0s - loss: 9.8266 - val_loss: 11.7573
Epoch 261/1000- 0s - loss: 9.8095 - val_loss: 11.7432
Epoch 262/1000- 0s - loss: 9.7870 - val_loss: 11.7341
Epoch 263/1000- 0s - loss: 9.7733 - val_loss: 11.6837
Epoch 264/1000- 0s - loss: 9.7621 - val_loss: 11.6979
Epoch 265/1000- 0s - loss: 9.7290 - val_loss: 11.6682
Epoch 266/1000- 0s - loss: 9.7105 - val_loss: 11.5918
Epoch 267/1000- 0s - loss: 9.6964 - val_loss: 11.4957
Epoch 268/1000- 0s - loss: 9.6705 - val_loss: 11.4671
Epoch 269/1000- 0s - loss: 9.6492 - val_loss: 11.4310
Epoch 270/1000- 0s - loss: 9.6262 - val_loss: 11.4391
Epoch 271/1000- 0s - loss: 9.6017 - val_loss: 11.4193
Epoch 272/1000- 0s - loss: 9.5823 - val_loss: 11.3445
Epoch 273/1000- 0s - loss: 9.5601 - val_loss: 11.2745
Epoch 274/1000- 0s - loss: 9.5388 - val_loss: 11.2656
Epoch 275/1000- 0s - loss: 9.5148 - val_loss: 11.2622
Epoch 276/1000- 0s - loss: 9.4939 - val_loss: 11.2601
Epoch 277/1000- 0s - loss: 9.4902 - val_loss: 11.1829
Epoch 278/1000- 0s - loss: 9.4746 - val_loss: 11.1980
Epoch 279/1000- 0s - loss: 9.4436 - val_loss: 11.2050
Epoch 280/1000- 0s - loss: 9.4259 - val_loss: 11.2028
Epoch 281/1000- 0s - loss: 9.4192 - val_loss: 11.1810
Epoch 282/1000- 0s - loss: 9.3910 - val_loss: 11.1952
Epoch 283/1000- 0s - loss: 9.4012 - val_loss: 11.2408
Epoch 284/1000- 0s - loss: 9.3752 - val_loss: 11.1506
Epoch 285/1000- 0s - loss: 9.3625 - val_loss: 11.1181
Epoch 286/1000- 0s - loss: 9.3673 - val_loss: 11.0366
Epoch 287/1000- 0s - loss: 9.3421 - val_loss: 11.0141
Epoch 288/1000- 0s - loss: 9.3219 - val_loss: 11.0232
Epoch 289/1000- 0s - loss: 9.3020 - val_loss: 11.0165
Epoch 290/1000- 0s - loss: 9.2797 - val_loss: 10.9553
Epoch 291/1000- 0s - loss: 9.2648 - val_loss: 10.8703
Epoch 292/1000- 0s - loss: 9.2774 - val_loss: 10.7951
Epoch 293/1000- 0s - loss: 9.2675 - val_loss: 10.7663
Epoch 294/1000- 0s - loss: 9.2558 - val_loss: 10.6986
Epoch 295/1000- 0s - loss: 9.2492 - val_loss: 10.6766
Epoch 296/1000- 0s - loss: 9.2163 - val_loss: 10.6969
Epoch 297/1000- 0s - loss: 9.1810 - val_loss: 10.7375
Epoch 298/1000- 0s - loss: 9.1611 - val_loss: 10.8039
Epoch 299/1000- 0s - loss: 9.1537 - val_loss: 10.8679
Epoch 300/1000- 0s - loss: 9.1401 - val_loss: 10.8980
Epoch 301/1000- 0s - loss: 9.1325 - val_loss: 10.8921
Epoch 302/1000- 0s - loss: 9.1152 - val_loss: 10.8517
Epoch 303/1000- 0s - loss: 9.0888 - val_loss: 10.8592
Epoch 304/1000- 0s - loss: 9.0723 - val_loss: 10.8164
Epoch 305/1000- 0s - loss: 9.0754 - val_loss: 10.8013
Epoch 306/1000- 0s - loss: 9.0536 - val_loss: 10.8482
Epoch 307/1000- 0s - loss: 9.0342 - val_loss: 10.8750
Epoch 308/1000- 0s - loss: 9.0205 - val_loss: 10.9125
Epoch 309/1000- 0s - loss: 9.0027 - val_loss: 10.9222
Epoch 310/1000- 0s - loss: 8.9918 - val_loss: 10.9294
Epoch 311/1000- 0s - loss: 8.9797 - val_loss: 10.8656
Epoch 312/1000- 0s - loss: 8.9659 - val_loss: 10.8346
Epoch 313/1000- 0s - loss: 8.9525 - val_loss: 10.8616
Epoch 314/1000- 0s - loss: 8.9443 - val_loss: 10.8688
Epoch 315/1000- 0s - loss: 8.9302 - val_loss: 10.9272
Epoch 316/1000- 0s - loss: 8.9138 - val_loss: 10.8415
Epoch 317/1000- 0s - loss: 8.9035 - val_loss: 10.7621
Epoch 318/1000- 0s - loss: 8.8837 - val_loss: 10.7925
Epoch 319/1000- 0s - loss: 8.8797 - val_loss: 10.8277
Epoch 320/1000- 0s - loss: 8.8582 - val_loss: 10.8511
Epoch 321/1000- 0s - loss: 8.8460 - val_loss: 10.8749
Epoch 322/1000- 0s - loss: 8.8483 - val_loss: 10.8923
Epoch 323/1000- 0s - loss: 8.8387 - val_loss: 10.8425
Epoch 324/1000- 0s - loss: 8.8164 - val_loss: 10.8036
Epoch 325/1000- 0s - loss: 8.8381 - val_loss: 10.6709
Epoch 326/1000- 0s - loss: 8.7796 - val_loss: 10.6373
Epoch 327/1000- 0s - loss: 8.7661 - val_loss: 10.6759
Epoch 328/1000- 0s - loss: 8.7963 - val_loss: 10.7422
Epoch 329/1000- 0s - loss: 8.7509 - val_loss: 10.6758
Epoch 330/1000- 0s - loss: 8.7488 - val_loss: 10.6758
Epoch 331/1000- 0s - loss: 8.7206 - val_loss: 10.7761
Epoch 332/1000- 0s - loss: 8.7120 - val_loss: 10.8222
Epoch 333/1000- 0s - loss: 8.7187 - val_loss: 10.7963
Epoch 334/1000- 0s - loss: 8.6982 - val_loss: 10.7546
Epoch 335/1000- 0s - loss: 8.6870 - val_loss: 10.6930
Epoch 336/1000- 0s - loss: 8.6634 - val_loss: 10.6206
Epoch 337/1000- 0s - loss: 8.6658 - val_loss: 10.4322
Epoch 338/1000- 0s - loss: 8.6511 - val_loss: 10.4114
Epoch 339/1000- 0s - loss: 8.6222 - val_loss: 10.3955
Epoch 340/1000- 0s - loss: 8.6127 - val_loss: 10.3674
Epoch 341/1000- 0s - loss: 8.6136 - val_loss: 10.3161
Epoch 342/1000- 0s - loss: 8.5840 - val_loss: 10.3241
Epoch 343/1000- 0s - loss: 8.5690 - val_loss: 10.3284
Epoch 344/1000- 0s - loss: 8.5481 - val_loss: 10.3945
Epoch 345/1000- 0s - loss: 8.5632 - val_loss: 10.4634
Epoch 346/1000- 0s - loss: 8.5353 - val_loss: 10.4523
Epoch 347/1000- 0s - loss: 8.5279 - val_loss: 10.4433
Epoch 348/1000- 0s - loss: 8.5172 - val_loss: 10.4336
Epoch 349/1000- 0s - loss: 8.5000 - val_loss: 10.3681
Epoch 350/1000- 0s - loss: 8.4766 - val_loss: 10.3165
Epoch 351/1000- 0s - loss: 8.4767 - val_loss: 10.3574
Epoch 352/1000- 0s - loss: 8.4723 - val_loss: 10.4080
Epoch 353/1000- 0s - loss: 8.4622 - val_loss: 10.3892
Epoch 354/1000- 0s - loss: 8.4221 - val_loss: 10.2788
Epoch 355/1000- 0s - loss: 8.4285 - val_loss: 10.1881
Epoch 356/1000- 0s - loss: 8.4010 - val_loss: 10.1558
Epoch 357/1000- 0s - loss: 8.4109 - val_loss: 10.2491
Epoch 358/1000- 0s - loss: 8.3848 - val_loss: 10.2795
Epoch 359/1000- 0s - loss: 8.3713 - val_loss: 10.2002
Epoch 360/1000- 0s - loss: 8.3541 - val_loss: 10.1635
Epoch 361/1000- 0s - loss: 8.3585 - val_loss: 10.1494
Epoch 362/1000- 0s - loss: 8.3358 - val_loss: 10.0814
Epoch 363/1000- 0s - loss: 8.3387 - val_loss: 10.0118
Epoch 364/1000- 0s - loss: 8.3137 - val_loss: 10.0304
Epoch 365/1000- 0s - loss: 8.3274 - val_loss: 10.1559
Epoch 366/1000- 0s - loss: 8.3032 - val_loss: 10.1453
Epoch 367/1000- 0s - loss: 8.2848 - val_loss: 10.0953
Epoch 368/1000- 0s - loss: 8.2782 - val_loss: 10.1053
Epoch 369/1000- 0s - loss: 8.2867 - val_loss: 10.1566
Epoch 370/1000- 0s - loss: 8.2609 - val_loss: 10.0592
Epoch 371/1000- 0s - loss: 8.2492 - val_loss: 9.9413
Epoch 372/1000- 0s - loss: 8.2279 - val_loss: 9.9468
Epoch 373/1000- 0s - loss: 8.2247 - val_loss: 9.9058
Epoch 374/1000- 0s - loss: 8.2210 - val_loss: 9.8453
Epoch 375/1000- 0s - loss: 8.2330 - val_loss: 9.8605
Epoch 376/1000- 0s - loss: 8.1977 - val_loss: 9.7890
Epoch 377/1000- 0s - loss: 8.2023 - val_loss: 9.7465
Epoch 378/1000- 0s - loss: 8.2100 - val_loss: 9.7059
Epoch 379/1000- 0s - loss: 8.2008 - val_loss: 9.7453
Epoch 380/1000- 0s - loss: 8.1668 - val_loss: 9.7531
Epoch 381/1000- 0s - loss: 8.1635 - val_loss: 9.7645
Epoch 382/1000- 0s - loss: 8.1444 - val_loss: 9.7483
Epoch 383/1000- 0s - loss: 8.1365 - val_loss: 9.7124
Epoch 384/1000- 0s - loss: 8.1279 - val_loss: 9.7045
Epoch 385/1000- 0s - loss: 8.1201 - val_loss: 9.7145
Epoch 386/1000- 0s - loss: 8.1208 - val_loss: 9.7339
Epoch 387/1000- 0s - loss: 8.1222 - val_loss: 9.7939
Epoch 388/1000- 0s - loss: 8.0853 - val_loss: 9.7851
Epoch 389/1000- 0s - loss: 8.0854 - val_loss: 9.7562
Epoch 390/1000- 0s - loss: 8.0762 - val_loss: 9.7514
Epoch 391/1000- 0s - loss: 8.0688 - val_loss: 9.7722
Epoch 392/1000- 0s - loss: 8.0687 - val_loss: 9.7871
Epoch 393/1000- 0s - loss: 8.0618 - val_loss: 9.8890
Epoch 394/1000- 0s - loss: 8.0692 - val_loss: 9.8754
Epoch 395/1000- 0s - loss: 8.0575 - val_loss: 9.7703
Epoch 396/1000- 0s - loss: 8.0333 - val_loss: 9.7485
Epoch 397/1000- 0s - loss: 8.0103 - val_loss: 9.7759
Epoch 398/1000- 0s - loss: 8.0172 - val_loss: 9.7576
Epoch 399/1000- 0s - loss: 8.0080 - val_loss: 9.7525
Epoch 400/1000- 0s - loss: 8.0005 - val_loss: 9.7616
Epoch 401/1000- 0s - loss: 7.9704 - val_loss: 9.6813
Epoch 402/1000- 0s - loss: 7.9888 - val_loss: 9.6707
Epoch 403/1000- 0s - loss: 7.9841 - val_loss: 9.6930
Epoch 404/1000- 0s - loss: 7.9677 - val_loss: 9.6811
Epoch 405/1000- 0s - loss: 7.9617 - val_loss: 9.6276
Epoch 406/1000- 0s - loss: 7.9841 - val_loss: 9.5850
Epoch 407/1000- 0s - loss: 7.9654 - val_loss: 9.5989
Epoch 408/1000- 0s - loss: 7.9476 - val_loss: 9.6232
Epoch 409/1000- 0s - loss: 7.9519 - val_loss: 9.6726
Epoch 410/1000- 0s - loss: 7.9369 - val_loss: 9.7567
Epoch 411/1000- 0s - loss: 7.9223 - val_loss: 9.7369
Epoch 412/1000- 0s - loss: 7.9220 - val_loss: 9.7348
Epoch 413/1000- 0s - loss: 7.9310 - val_loss: 9.5686
Epoch 414/1000- 0s - loss: 7.8971 - val_loss: 9.5444
Epoch 415/1000- 0s - loss: 7.8960 - val_loss: 9.5441
Epoch 416/1000- 0s - loss: 7.8916 - val_loss: 9.4883
Epoch 417/1000- 0s - loss: 7.8765 - val_loss: 9.5037
Epoch 418/1000- 0s - loss: 7.8644 - val_loss: 9.5271
Epoch 419/1000- 0s - loss: 7.8523 - val_loss: 9.5008
Epoch 420/1000- 0s - loss: 7.8506 - val_loss: 9.4746
Epoch 421/1000- 0s - loss: 7.8538 - val_loss: 9.4658
Epoch 422/1000- 0s - loss: 7.8308 - val_loss: 9.3478
Epoch 423/1000- 0s - loss: 7.8875 - val_loss: 9.3091
Epoch 424/1000- 0s - loss: 7.8633 - val_loss: 9.3342
Epoch 425/1000- 0s - loss: 7.8302 - val_loss: 9.4065
Epoch 426/1000- 0s - loss: 7.8212 - val_loss: 9.4203
Epoch 427/1000- 0s - loss: 7.8332 - val_loss: 9.4748
Epoch 428/1000- 0s - loss: 7.8091 - val_loss: 9.4748
Epoch 429/1000- 0s - loss: 7.7959 - val_loss: 9.5255
Epoch 430/1000- 0s - loss: 7.8168 - val_loss: 9.4170
Epoch 431/1000- 0s - loss: 7.7823 - val_loss: 9.4302
Epoch 432/1000- 0s - loss: 7.7762 - val_loss: 9.4258
Epoch 433/1000- 0s - loss: 7.7796 - val_loss: 9.4266
Epoch 434/1000- 0s - loss: 7.7753 - val_loss: 9.4045
Epoch 435/1000- 0s - loss: 7.7657 - val_loss: 9.3825
Epoch 436/1000- 0s - loss: 7.7469 - val_loss: 9.3104
Epoch 437/1000- 0s - loss: 7.7607 - val_loss: 9.2103
Epoch 438/1000- 0s - loss: 7.7419 - val_loss: 9.2481
Epoch 439/1000- 0s - loss: 7.7340 - val_loss: 9.2872
Epoch 440/1000- 0s - loss: 7.7184 - val_loss: 9.4087
Epoch 441/1000- 0s - loss: 7.7430 - val_loss: 9.5141
Epoch 442/1000- 0s - loss: 7.7368 - val_loss: 9.4866
Epoch 443/1000- 0s - loss: 7.7329 - val_loss: 9.4196
Epoch 444/1000- 0s - loss: 7.7017 - val_loss: 9.4086
Epoch 445/1000- 0s - loss: 7.6908 - val_loss: 9.3950
Epoch 446/1000- 0s - loss: 7.6865 - val_loss: 9.4267
Epoch 447/1000- 0s - loss: 7.6731 - val_loss: 9.3945
Epoch 448/1000- 0s - loss: 7.6665 - val_loss: 9.3778
Epoch 449/1000- 0s - loss: 7.6738 - val_loss: 9.3590
Epoch 450/1000- 0s - loss: 7.6739 - val_loss: 9.3468
Epoch 451/1000- 0s - loss: 7.6753 - val_loss: 9.3527
Epoch 452/1000- 0s - loss: 7.6685 - val_loss: 9.3419
Epoch 453/1000- 0s - loss: 7.6555 - val_loss: 9.3090
Epoch 454/1000- 0s - loss: 7.6404 - val_loss: 9.2873
Epoch 455/1000- 0s - loss: 7.6279 - val_loss: 9.3055
Epoch 456/1000- 0s - loss: 7.6209 - val_loss: 9.3193
Epoch 457/1000- 0s - loss: 7.6182 - val_loss: 9.2961
Epoch 458/1000- 0s - loss: 7.6453 - val_loss: 9.3292
Epoch 459/1000- 0s - loss: 7.6278 - val_loss: 9.2790
Epoch 460/1000- 0s - loss: 7.6134 - val_loss: 9.3962
Epoch 461/1000- 0s - loss: 7.6195 - val_loss: 9.3386
Epoch 462/1000- 0s - loss: 7.5990 - val_loss: 9.3383
Epoch 463/1000- 0s - loss: 7.5899 - val_loss: 9.3752
Epoch 464/1000- 0s - loss: 7.5938 - val_loss: 9.3618
Epoch 465/1000- 0s - loss: 7.5738 - val_loss: 9.2606
Epoch 466/1000- 0s - loss: 7.5666 - val_loss: 9.2365
Epoch 467/1000- 0s - loss: 7.5713 - val_loss: 9.2111
Epoch 468/1000- 0s - loss: 7.5686 - val_loss: 9.2024
Epoch 469/1000- 0s - loss: 7.5623 - val_loss: 9.2167
Epoch 470/1000- 0s - loss: 7.5463 - val_loss: 9.2436
Epoch 471/1000- 0s - loss: 7.5377 - val_loss: 9.2348
Epoch 472/1000- 0s - loss: 7.5338 - val_loss: 9.2552
Epoch 473/1000- 0s - loss: 7.5265 - val_loss: 9.2904
Epoch 474/1000- 0s - loss: 7.5308 - val_loss: 9.2888
Epoch 475/1000- 0s - loss: 7.5382 - val_loss: 9.2878
Epoch 476/1000- 0s - loss: 7.5478 - val_loss: 9.1688
Epoch 477/1000- 0s - loss: 7.5148 - val_loss: 9.1464
Epoch 478/1000- 0s - loss: 7.5126 - val_loss: 9.1406
Epoch 479/1000- 0s - loss: 7.5022 - val_loss: 9.1098
Epoch 480/1000- 0s - loss: 7.4976 - val_loss: 9.1096
Epoch 481/1000- 0s - loss: 7.4839 - val_loss: 9.1037
Epoch 482/1000- 0s - loss: 7.4758 - val_loss: 9.1226
Epoch 483/1000- 0s - loss: 7.4828 - val_loss: 9.0665
Epoch 484/1000- 0s - loss: 7.4734 - val_loss: 9.0339
Epoch 485/1000- 0s - loss: 7.4679 - val_loss: 9.0203
Epoch 486/1000- 0s - loss: 7.4601 - val_loss: 8.9967
Epoch 487/1000- 0s - loss: 7.4945 - val_loss: 8.9713
Epoch 488/1000- 0s - loss: 7.4982 - val_loss: 8.9930
Epoch 489/1000- 0s - loss: 7.4776 - val_loss: 8.9826
Epoch 490/1000- 0s - loss: 7.4644 - val_loss: 9.0402
Epoch 491/1000- 0s - loss: 7.4525 - val_loss: 9.1728
Epoch 492/1000- 0s - loss: 7.4518 - val_loss: 9.1823
Epoch 493/1000- 0s - loss: 7.4512 - val_loss: 9.1559
Epoch 494/1000- 0s - loss: 7.4614 - val_loss: 9.2690
Epoch 495/1000- 0s - loss: 7.4647 - val_loss: 9.2601
Epoch 496/1000- 0s - loss: 7.4457 - val_loss: 9.1712
Epoch 497/1000- 0s - loss: 7.4554 - val_loss: 8.9504
Epoch 498/1000- 0s - loss: 7.4170 - val_loss: 8.9071
Epoch 499/1000- 0s - loss: 7.4237 - val_loss: 8.9131
Epoch 500/1000- 0s - loss: 7.4320 - val_loss: 8.9394
Epoch 501/1000- 0s - loss: 7.4182 - val_loss: 8.9443
Epoch 502/1000- 0s - loss: 7.4120 - val_loss: 8.9685
Epoch 503/1000- 0s - loss: 7.4104 - val_loss: 8.9074
Epoch 504/1000- 0s - loss: 7.4204 - val_loss: 8.9123
Epoch 505/1000- 0s - loss: 7.4114 - val_loss: 8.9123
Epoch 506/1000- 0s - loss: 7.4200 - val_loss: 8.9229
Epoch 507/1000- 0s - loss: 7.3940 - val_loss: 8.9299
Epoch 508/1000- 0s - loss: 7.4050 - val_loss: 8.9499
Epoch 509/1000- 0s - loss: 7.3876 - val_loss: 8.8366
Epoch 510/1000- 0s - loss: 7.4085 - val_loss: 8.8196
Epoch 511/1000- 0s - loss: 7.3853 - val_loss: 8.9050
Epoch 512/1000- 0s - loss: 7.3525 - val_loss: 8.9716
Epoch 513/1000- 0s - loss: 7.3790 - val_loss: 9.0047
Epoch 514/1000- 0s - loss: 7.4038 - val_loss: 9.0093
Epoch 515/1000- 0s - loss: 7.3796 - val_loss: 8.8904
Epoch 516/1000- 0s - loss: 7.3671 - val_loss: 8.8123
Epoch 517/1000- 0s - loss: 7.3561 - val_loss: 8.8055
Epoch 518/1000- 0s - loss: 7.3511 - val_loss: 8.7853
Epoch 519/1000- 0s - loss: 7.3664 - val_loss: 8.7575
Epoch 520/1000- 0s - loss: 7.4085 - val_loss: 8.6663
Epoch 521/1000- 0s - loss: 7.3823 - val_loss: 8.6810
Epoch 522/1000- 0s - loss: 7.3353 - val_loss: 8.7941
Epoch 523/1000- 0s - loss: 7.3142 - val_loss: 8.8653
Epoch 524/1000- 0s - loss: 7.3648 - val_loss: 9.0518
Epoch 525/1000- 0s - loss: 7.3819 - val_loss: 9.0588
Epoch 526/1000- 0s - loss: 7.3882 - val_loss: 8.8316
Epoch 527/1000- 0s - loss: 7.3255 - val_loss: 8.7841
Epoch 528/1000- 0s - loss: 7.3287 - val_loss: 8.7704
Epoch 529/1000- 0s - loss: 7.3126 - val_loss: 8.8060
Epoch 530/1000- 0s - loss: 7.3156 - val_loss: 8.8370
Epoch 531/1000- 0s - loss: 7.3028 - val_loss: 8.7535
Epoch 532/1000- 0s - loss: 7.3223 - val_loss: 8.7023
Epoch 533/1000- 0s - loss: 7.3409 - val_loss: 8.7554
Epoch 534/1000- 0s - loss: 7.2988 - val_loss: 8.7629
Epoch 535/1000- 0s - loss: 7.3027 - val_loss: 8.7798
Epoch 536/1000- 0s - loss: 7.2900 - val_loss: 8.8719
Epoch 537/1000- 0s - loss: 7.3077 - val_loss: 9.0230
Epoch 538/1000- 0s - loss: 7.3114 - val_loss: 8.9872
Epoch 539/1000- 0s - loss: 7.2892 - val_loss: 9.0381
Epoch 540/1000- 0s - loss: 7.2971 - val_loss: 9.1181
Epoch 541/1000- 0s - loss: 7.2840 - val_loss: 8.9708
Epoch 542/1000- 0s - loss: 7.2606 - val_loss: 8.9025
Epoch 543/1000- 0s - loss: 7.2699 - val_loss: 8.8968
Epoch 544/1000- 0s - loss: 7.3116 - val_loss: 8.8308
Epoch 545/1000- 0s - loss: 7.2621 - val_loss: 8.9328
Epoch 546/1000- 0s - loss: 7.2553 - val_loss: 8.8968
Epoch 547/1000- 0s - loss: 7.2492 - val_loss: 8.9049
Epoch 548/1000- 0s - loss: 7.2376 - val_loss: 8.9244
Epoch 549/1000- 0s - loss: 7.2481 - val_loss: 8.8881
Epoch 550/1000- 0s - loss: 7.2358 - val_loss: 8.8818
Epoch 551/1000- 0s - loss: 7.2338 - val_loss: 8.9121
Epoch 552/1000- 0s - loss: 7.3010 - val_loss: 9.1588
Epoch 553/1000- 0s - loss: 7.2741 - val_loss: 9.0692
Epoch 554/1000- 0s - loss: 7.2590 - val_loss: 9.0917
Epoch 555/1000- 0s - loss: 7.2662 - val_loss: 9.1665
Epoch 556/1000- 0s - loss: 7.2556 - val_loss: 9.1096
Epoch 557/1000- 0s - loss: 7.2315 - val_loss: 8.9683
Epoch 558/1000- 0s - loss: 7.2812 - val_loss: 8.9278
Epoch 559/1000- 0s - loss: 7.2007 - val_loss: 9.0530
Epoch 560/1000- 0s - loss: 7.2429 - val_loss: 9.0803
Epoch 561/1000- 0s - loss: 7.2286 - val_loss: 8.9845
Epoch 562/1000- 0s - loss: 7.2232 - val_loss: 8.9234
Epoch 563/1000- 0s - loss: 7.2181 - val_loss: 8.8678
Epoch 564/1000- 0s - loss: 7.2216 - val_loss: 8.9412
Epoch 565/1000- 0s - loss: 7.2220 - val_loss: 8.9037
Epoch 566/1000- 0s - loss: 7.2201 - val_loss: 9.0258
Epoch 567/1000- 0s - loss: 7.2315 - val_loss: 9.0276
Epoch 568/1000- 0s - loss: 7.2162 - val_loss: 8.8868
Epoch 569/1000- 0s - loss: 7.1910 - val_loss: 8.7985
Epoch 570/1000- 0s - loss: 7.1854 - val_loss: 8.7582
Epoch 571/1000- 0s - loss: 7.1888 - val_loss: 8.7860
Epoch 572/1000- 0s - loss: 7.1922 - val_loss: 8.7441
Epoch 573/1000- 0s - loss: 7.2300 - val_loss: 8.6933
Epoch 574/1000- 0s - loss: 7.2109 - val_loss: 8.7351
Epoch 575/1000- 0s - loss: 7.1788 - val_loss: 8.7148
Epoch 576/1000- 0s - loss: 7.2081 - val_loss: 8.7247
Epoch 577/1000- 0s - loss: 7.2629 - val_loss: 8.8782
Epoch 578/1000- 0s - loss: 7.2050 - val_loss: 8.8041
Epoch 579/1000- 0s - loss: 7.1858 - val_loss: 8.7894
Epoch 580/1000- 0s - loss: 7.1628 - val_loss: 8.8416
Epoch 581/1000- 0s - loss: 7.1888 - val_loss: 8.8093
Epoch 582/1000- 0s - loss: 7.1746 - val_loss: 8.8096
Epoch 583/1000- 0s - loss: 7.1765 - val_loss: 8.7336
Epoch 584/1000- 0s - loss: 7.1703 - val_loss: 8.7404
Epoch 585/1000- 0s - loss: 7.1719 - val_loss: 8.7679
Epoch 586/1000- 0s - loss: 7.1549 - val_loss: 8.7411
Epoch 587/1000- 0s - loss: 7.1621 - val_loss: 8.7402
Epoch 588/1000- 0s - loss: 7.1625 - val_loss: 8.7479
Epoch 589/1000- 0s - loss: 7.1804 - val_loss: 8.7629
Epoch 590/1000- 0s - loss: 7.1583 - val_loss: 8.9162
Epoch 591/1000- 0s - loss: 7.1504 - val_loss: 8.9899
Epoch 592/1000- 0s - loss: 7.1585 - val_loss: 9.0471
Epoch 593/1000- 0s - loss: 7.1546 - val_loss: 9.0227
Epoch 594/1000- 0s - loss: 7.1483 - val_loss: 8.9838
Epoch 595/1000- 0s - loss: 7.1467 - val_loss: 8.9171
Epoch 596/1000- 0s - loss: 7.1360 - val_loss: 8.8858
Epoch 597/1000- 0s - loss: 7.1871 - val_loss: 8.9406
Epoch 598/1000- 0s - loss: 7.1329 - val_loss: 8.9990
Epoch 599/1000- 0s - loss: 7.1322 - val_loss: 9.0193
Epoch 600/1000- 0s - loss: 7.1318 - val_loss: 8.9862
Epoch 601/1000- 0s - loss: 7.1294 - val_loss: 8.9383
Epoch 602/1000- 0s - loss: 7.1217 - val_loss: 8.8549
Epoch 603/1000- 0s - loss: 7.1296 - val_loss: 8.8326
Epoch 604/1000- 0s - loss: 7.1382 - val_loss: 8.8090
Epoch 605/1000- 0s - loss: 7.1453 - val_loss: 8.8375
Epoch 606/1000- 0s - loss: 7.1302 - val_loss: 8.7985
Epoch 607/1000- 0s - loss: 7.1177 - val_loss: 8.8318
Epoch 608/1000- 0s - loss: 7.1185 - val_loss: 8.8661
Epoch 609/1000- 0s - loss: 7.1066 - val_loss: 8.7912
Epoch 610/1000- 0s - loss: 7.1154 - val_loss: 8.7511
Epoch 611/1000- 0s - loss: 7.1331 - val_loss: 8.7270
Epoch 612/1000- 0s - loss: 7.1348 - val_loss: 8.7352
Epoch 613/1000- 0s - loss: 7.1382 - val_loss: 8.7614
Epoch 614/1000- 0s - loss: 7.1264 - val_loss: 8.7486
Epoch 615/1000- 0s - loss: 7.1129 - val_loss: 8.7995
Epoch 616/1000- 0s - loss: 7.1249 - val_loss: 8.8461
Epoch 617/1000- 0s - loss: 7.1196 - val_loss: 8.8374
Epoch 618/1000- 0s - loss: 7.1132 - val_loss: 8.6431
Epoch 619/1000- 0s - loss: 7.1038 - val_loss: 8.6073
Epoch 620/1000- 0s - loss: 7.1130 - val_loss: 8.6246
Epoch 621/1000- 0s - loss: 7.0796 - val_loss: 8.7209
Epoch 622/1000- 0s - loss: 7.0920 - val_loss: 8.7489
Epoch 623/1000- 0s - loss: 7.0839 - val_loss: 8.6729
Epoch 624/1000- 0s - loss: 7.0933 - val_loss: 8.7233
Epoch 625/1000- 0s - loss: 7.0879 - val_loss: 8.8441
Epoch 626/1000- 0s - loss: 7.0877 - val_loss: 8.8173
Epoch 627/1000- 0s - loss: 7.1302 - val_loss: 8.6925
Epoch 628/1000- 0s - loss: 7.0711 - val_loss: 8.7263
Epoch 629/1000- 0s - loss: 7.1090 - val_loss: 8.7833
Epoch 630/1000- 0s - loss: 7.1146 - val_loss: 8.7732
Epoch 631/1000- 0s - loss: 7.0759 - val_loss: 8.6664
Epoch 632/1000- 0s - loss: 7.0672 - val_loss: 8.6166
Epoch 633/1000- 0s - loss: 7.0720 - val_loss: 8.5739
Epoch 634/1000- 0s - loss: 7.0862 - val_loss: 8.5997
Epoch 635/1000- 0s - loss: 7.0622 - val_loss: 8.6503
Epoch 636/1000- 0s - loss: 7.0927 - val_loss: 8.7070
Epoch 637/1000- 0s - loss: 7.0681 - val_loss: 8.7236
Epoch 638/1000- 0s - loss: 7.0591 - val_loss: 8.6739
Epoch 639/1000- 0s - loss: 7.0881 - val_loss: 8.5848
Epoch 640/1000- 0s - loss: 7.1008 - val_loss: 8.5578
Epoch 641/1000- 0s - loss: 7.0774 - val_loss: 8.6225
Epoch 642/1000- 0s - loss: 7.0502 - val_loss: 8.6967
Epoch 643/1000- 0s - loss: 7.0538 - val_loss: 8.7666
Epoch 644/1000- 0s - loss: 7.0759 - val_loss: 8.7471
Epoch 645/1000- 0s - loss: 7.0839 - val_loss: 8.6874
Epoch 646/1000- 0s - loss: 7.0555 - val_loss: 8.6607
Epoch 647/1000- 0s - loss: 7.0576 - val_loss: 8.6915
Epoch 648/1000- 0s - loss: 7.0633 - val_loss: 8.7571
Epoch 649/1000- 0s - loss: 7.0408 - val_loss: 8.6331
Epoch 650/1000- 0s - loss: 7.0771 - val_loss: 8.5021
Epoch 651/1000- 0s - loss: 7.0837 - val_loss: 8.5108
Epoch 652/1000- 0s - loss: 7.0857 - val_loss: 8.5488
Epoch 653/1000- 0s - loss: 7.0314 - val_loss: 8.6862
Epoch 654/1000- 0s - loss: 7.0642 - val_loss: 8.7735
Epoch 655/1000- 0s - loss: 7.0981 - val_loss: 8.6833
Epoch 656/1000- 0s - loss: 7.0484 - val_loss: 8.6187
Epoch 657/1000- 0s - loss: 7.0410 - val_loss: 8.6061
Epoch 658/1000- 0s - loss: 7.0400 - val_loss: 8.6124
Epoch 659/1000- 0s - loss: 7.0291 - val_loss: 8.6136
Epoch 660/1000- 0s - loss: 7.0571 - val_loss: 8.5086
Epoch 661/1000- 0s - loss: 7.0493 - val_loss: 8.4785
Epoch 662/1000- 0s - loss: 7.0556 - val_loss: 8.5378
Epoch 663/1000- 0s - loss: 7.0432 - val_loss: 8.6592
Epoch 664/1000- 0s - loss: 7.0467 - val_loss: 8.7147
Epoch 665/1000- 0s - loss: 7.0407 - val_loss: 8.7243
Epoch 666/1000- 0s - loss: 7.0359 - val_loss: 8.7387
Epoch 667/1000- 0s - loss: 7.0407 - val_loss: 8.7396
Epoch 668/1000- 0s - loss: 7.0416 - val_loss: 8.7544
Epoch 669/1000- 0s - loss: 7.0579 - val_loss: 8.7076
Epoch 670/1000- 0s - loss: 7.0420 - val_loss: 8.7353
Epoch 671/1000- 0s - loss: 7.0809 - val_loss: 8.6717
Epoch 672/1000- 0s - loss: 7.0862 - val_loss: 8.7637
Epoch 673/1000- 0s - loss: 7.0212 - val_loss: 8.7596
Epoch 674/1000- 0s - loss: 7.0257 - val_loss: 8.7321
Epoch 675/1000- 0s - loss: 7.0084 - val_loss: 8.6148
Epoch 676/1000- 0s - loss: 7.0240 - val_loss: 8.5008
Epoch 677/1000- 0s - loss: 7.0386 - val_loss: 8.4461
Epoch 678/1000- 0s - loss: 7.0349 - val_loss: 8.4888
Epoch 679/1000- 0s - loss: 7.0252 - val_loss: 8.5074
Epoch 680/1000- 0s - loss: 7.0214 - val_loss: 8.5807
Epoch 681/1000- 0s - loss: 7.0153 - val_loss: 8.6040
Epoch 682/1000- 0s - loss: 7.0200 - val_loss: 8.7211
Epoch 683/1000- 0s - loss: 7.0113 - val_loss: 8.6607
Epoch 684/1000- 0s - loss: 7.0073 - val_loss: 8.6738
Epoch 685/1000- 0s - loss: 6.9951 - val_loss: 8.7710
Epoch 686/1000- 0s - loss: 7.0535 - val_loss: 8.8425
Epoch 687/1000- 0s - loss: 7.0248 - val_loss: 8.7719
Epoch 688/1000- 0s - loss: 6.9885 - val_loss: 8.6543
Epoch 689/1000- 0s - loss: 7.0459 - val_loss: 8.5305
Epoch 690/1000- 0s - loss: 7.0802 - val_loss: 8.5175
Epoch 691/1000- 0s - loss: 7.0609 - val_loss: 8.5654
Epoch 692/1000- 0s - loss: 7.0277 - val_loss: 8.6320
Epoch 693/1000- 0s - loss: 7.0107 - val_loss: 8.7095
Epoch 694/1000- 0s - loss: 7.0038 - val_loss: 8.7107
Epoch 695/1000- 0s - loss: 7.0720 - val_loss: 8.8791
Epoch 696/1000- 0s - loss: 7.0763 - val_loss: 8.8228
Epoch 697/1000- 0s - loss: 7.0468 - val_loss: 8.7540
Epoch 698/1000- 0s - loss: 6.9727 - val_loss: 8.5731
Epoch 699/1000- 0s - loss: 7.0117 - val_loss: 8.4158
Epoch 700/1000- 0s - loss: 7.0859 - val_loss: 8.3612
Epoch 701/1000- 0s - loss: 7.0769 - val_loss: 8.3481
Epoch 702/1000- 0s - loss: 7.0199 - val_loss: 8.4199
Epoch 703/1000- 0s - loss: 6.9942 - val_loss: 8.4981
Epoch 704/1000- 0s - loss: 7.0081 - val_loss: 8.5685
Epoch 705/1000- 0s - loss: 7.0002 - val_loss: 8.5314
Epoch 706/1000- 0s - loss: 6.9875 - val_loss: 8.5229
Epoch 707/1000- 0s - loss: 6.9855 - val_loss: 8.5419
Epoch 708/1000- 0s - loss: 6.9769 - val_loss: 8.4654
Epoch 709/1000- 0s - loss: 7.0904 - val_loss: 8.3860
Epoch 710/1000- 0s - loss: 7.0648 - val_loss: 8.4140
Epoch 711/1000- 0s - loss: 7.0413 - val_loss: 8.4135
Epoch 712/1000- 0s - loss: 7.0160 - val_loss: 8.4918
Epoch 713/1000- 0s - loss: 6.9839 - val_loss: 8.4950
Epoch 714/1000- 0s - loss: 6.9714 - val_loss: 8.5258
Epoch 715/1000- 0s - loss: 6.9909 - val_loss: 8.4725
Epoch 716/1000- 0s - loss: 7.0147 - val_loss: 8.4002
Epoch 717/1000- 0s - loss: 6.9776 - val_loss: 8.5254
Epoch 718/1000- 0s - loss: 6.9774 - val_loss: 8.6156
Epoch 719/1000- 0s - loss: 6.9822 - val_loss: 8.7260
Epoch 720/1000- 0s - loss: 7.0005 - val_loss: 8.7592
Epoch 721/1000- 0s - loss: 7.0071 - val_loss: 8.7225
Epoch 722/1000- 0s - loss: 6.9856 - val_loss: 8.6632
Epoch 723/1000- 0s - loss: 6.9765 - val_loss: 8.5598
Epoch 724/1000- 0s - loss: 6.9773 - val_loss: 8.4617
Epoch 725/1000- 0s - loss: 7.0084 - val_loss: 8.3950
Epoch 726/1000- 0s - loss: 7.0267 - val_loss: 8.4225
Epoch 727/1000- 0s - loss: 6.9970 - val_loss: 8.4516
Epoch 728/1000- 0s - loss: 6.9751 - val_loss: 8.4918
Epoch 729/1000- 0s - loss: 6.9697 - val_loss: 8.4669
Epoch 730/1000- 0s - loss: 6.9709 - val_loss: 8.4251
Epoch 731/1000- 0s - loss: 6.9992 - val_loss: 8.4364
Epoch 732/1000- 0s - loss: 6.9724 - val_loss: 8.4533
Epoch 733/1000- 0s - loss: 6.9695 - val_loss: 8.4596
Epoch 734/1000- 0s - loss: 6.9817 - val_loss: 8.3631
Epoch 735/1000- 0s - loss: 6.9956 - val_loss: 8.3666
Epoch 736/1000- 0s - loss: 6.9872 - val_loss: 8.3801
Epoch 737/1000- 0s - loss: 6.9770 - val_loss: 8.3974
Epoch 738/1000- 0s - loss: 6.9606 - val_loss: 8.4255
Epoch 739/1000- 0s - loss: 6.9616 - val_loss: 8.4131
Epoch 740/1000- 0s - loss: 6.9647 - val_loss: 8.4620
Epoch 741/1000- 0s - loss: 6.9526 - val_loss: 8.4625
Epoch 742/1000- 0s - loss: 6.9452 - val_loss: 8.5457
Epoch 743/1000- 0s - loss: 6.9532 - val_loss: 8.6293
Epoch 744/1000- 0s - loss: 7.0050 - val_loss: 8.7049
Epoch 745/1000- 0s - loss: 6.9784 - val_loss: 8.6454
Epoch 746/1000- 0s - loss: 6.9423 - val_loss: 8.5112
Epoch 747/1000- 0s - loss: 7.0955 - val_loss: 8.4148
Epoch 748/1000- 0s - loss: 6.9530 - val_loss: 8.6194
Epoch 749/1000- 0s - loss: 6.9859 - val_loss: 8.7461
Epoch 750/1000- 0s - loss: 6.9617 - val_loss: 8.6617
Epoch 751/1000- 0s - loss: 6.9470 - val_loss: 8.7342
Epoch 752/1000- 0s - loss: 6.9762 - val_loss: 8.7558
Epoch 753/1000- 0s - loss: 6.9471 - val_loss: 8.7122
Epoch 754/1000- 0s - loss: 6.9609 - val_loss: 8.6430
Epoch 755/1000- 0s - loss: 6.9442 - val_loss: 8.7058
Epoch 756/1000- 0s - loss: 6.9398 - val_loss: 8.7062
Epoch 757/1000- 0s - loss: 6.9364 - val_loss: 8.6928
Epoch 758/1000- 0s - loss: 6.9454 - val_loss: 8.6656
Epoch 759/1000- 0s - loss: 6.9365 - val_loss: 8.7003
Epoch 760/1000- 0s - loss: 6.9488 - val_loss: 8.7593
Epoch 761/1000- 0s - loss: 6.9520 - val_loss: 8.7532
Epoch 762/1000- 0s - loss: 6.9436 - val_loss: 8.6994
Epoch 763/1000- 0s - loss: 6.9363 - val_loss: 8.6286
Epoch 764/1000- 0s - loss: 6.9397 - val_loss: 8.6343
Epoch 765/1000- 0s - loss: 6.9382 - val_loss: 8.7789
Epoch 766/1000- 0s - loss: 6.9498 - val_loss: 8.7744
Epoch 767/1000- 0s - loss: 6.9404 - val_loss: 8.7064
Epoch 768/1000- 0s - loss: 6.9419 - val_loss: 8.5831
Epoch 769/1000- 0s - loss: 6.9329 - val_loss: 8.6001
Epoch 770/1000- 0s - loss: 6.9397 - val_loss: 8.5903
Epoch 771/1000- 0s - loss: 6.9368 - val_loss: 8.6268
Epoch 772/1000- 0s - loss: 6.9224 - val_loss: 8.6516
Epoch 773/1000- 0s - loss: 6.9320 - val_loss: 8.6468
Epoch 774/1000- 0s - loss: 6.9071 - val_loss: 8.5447
Epoch 775/1000- 0s - loss: 6.9548 - val_loss: 8.4981
Epoch 776/1000- 0s - loss: 6.9534 - val_loss: 8.5547
Epoch 777/1000- 0s - loss: 6.9255 - val_loss: 8.5889
Epoch 778/1000- 0s - loss: 6.9268 - val_loss: 8.6476
Epoch 779/1000- 0s - loss: 6.9264 - val_loss: 8.6437
Epoch 780/1000- 0s - loss: 6.9213 - val_loss: 8.5815
Epoch 781/1000- 0s - loss: 6.9743 - val_loss: 8.5044
Epoch 782/1000- 0s - loss: 6.9365 - val_loss: 8.5558
Epoch 783/1000- 0s - loss: 6.9597 - val_loss: 8.6376
Epoch 784/1000- 0s - loss: 6.9556 - val_loss: 8.6343
Epoch 785/1000- 0s - loss: 6.9399 - val_loss: 8.5156
Epoch 786/1000- 0s - loss: 6.9129 - val_loss: 8.6169
Epoch 787/1000- 0s - loss: 6.9338 - val_loss: 8.6341
Epoch 788/1000- 0s - loss: 6.9141 - val_loss: 8.6137
Epoch 789/1000- 0s - loss: 6.9225 - val_loss: 8.5282
Epoch 790/1000- 0s - loss: 6.9289 - val_loss: 8.5100
Epoch 791/1000- 0s - loss: 6.9324 - val_loss: 8.5717
Epoch 792/1000- 0s - loss: 6.9203 - val_loss: 8.5790
Epoch 793/1000- 0s - loss: 6.9136 - val_loss: 8.5526
Epoch 794/1000- 0s - loss: 6.9211 - val_loss: 8.5614
Epoch 795/1000- 0s - loss: 6.9231 - val_loss: 8.6062
Epoch 796/1000- 0s - loss: 6.9153 - val_loss: 8.5734
Epoch 797/1000- 0s - loss: 6.9278 - val_loss: 8.6145
Epoch 798/1000- 0s - loss: 6.9219 - val_loss: 8.5598
Epoch 799/1000- 0s - loss: 6.9134 - val_loss: 8.5734
Epoch 800/1000- 0s - loss: 6.9302 - val_loss: 8.5396
Epoch 801/1000- 0s - loss: 6.9262 - val_loss: 8.5620
Epoch 802/1000- 0s - loss: 6.9254 - val_loss: 8.5678
Epoch 803/1000- 0s - loss: 6.9047 - val_loss: 8.6422
Epoch 804/1000- 0s - loss: 6.9041 - val_loss: 8.6984
Epoch 805/1000- 0s - loss: 6.9192 - val_loss: 8.6895
Epoch 806/1000- 0s - loss: 6.9177 - val_loss: 8.5753
Epoch 807/1000- 0s - loss: 6.9109 - val_loss: 8.5719
Epoch 808/1000- 0s - loss: 6.9085 - val_loss: 8.5863
Epoch 809/1000- 0s - loss: 6.9083 - val_loss: 8.6027
Epoch 810/1000- 0s - loss: 6.9123 - val_loss: 8.5468
Epoch 811/1000- 0s - loss: 6.9112 - val_loss: 8.4689
Epoch 812/1000- 0s - loss: 6.9092 - val_loss: 8.5211
Epoch 813/1000- 0s - loss: 6.8973 - val_loss: 8.5242
Epoch 814/1000- 0s - loss: 6.8688 - val_loss: 8.7119
Epoch 815/1000- 0s - loss: 6.9726 - val_loss: 8.9140
Epoch 816/1000- 0s - loss: 6.9839 - val_loss: 8.7960
Epoch 817/1000- 0s - loss: 6.9633 - val_loss: 8.6834
Epoch 818/1000- 0s - loss: 6.9065 - val_loss: 8.6763
Epoch 819/1000- 0s - loss: 6.9133 - val_loss: 8.6713
Epoch 820/1000- 0s - loss: 6.9314 - val_loss: 8.6877
Epoch 821/1000- 0s - loss: 6.9165 - val_loss: 8.6786
Epoch 822/1000- 0s - loss: 6.9100 - val_loss: 8.6734
Epoch 823/1000- 0s - loss: 6.8999 - val_loss: 8.6742
Epoch 824/1000- 0s - loss: 6.9077 - val_loss: 8.6939
Epoch 825/1000- 0s - loss: 6.9056 - val_loss: 8.6672
Epoch 826/1000- 0s - loss: 6.8989 - val_loss: 8.6262
Epoch 827/1000- 0s - loss: 6.8945 - val_loss: 8.6037
Epoch 828/1000- 0s - loss: 6.8901 - val_loss: 8.6088
Epoch 829/1000- 0s - loss: 6.9051 - val_loss: 8.5793
Epoch 830/1000- 0s - loss: 6.8804 - val_loss: 8.5822
Epoch 831/1000- 0s - loss: 6.8904 - val_loss: 8.5982
Epoch 832/1000- 0s - loss: 6.8975 - val_loss: 8.6576
Epoch 833/1000- 0s - loss: 6.9127 - val_loss: 8.6246
Epoch 834/1000- 0s - loss: 6.8894 - val_loss: 8.6199
Epoch 835/1000- 0s - loss: 6.8814 - val_loss: 8.5784
Epoch 836/1000- 0s - loss: 6.8837 - val_loss: 8.5410
Epoch 837/1000- 0s - loss: 6.9107 - val_loss: 8.4859
Epoch 838/1000- 0s - loss: 6.8848 - val_loss: 8.5173
Epoch 839/1000- 0s - loss: 6.8804 - val_loss: 8.4971
Epoch 840/1000- 0s - loss: 6.9009 - val_loss: 8.4524
Epoch 841/1000- 0s - loss: 6.8976 - val_loss: 8.5148
Epoch 842/1000- 0s - loss: 6.8670 - val_loss: 8.5860
Epoch 843/1000- 0s - loss: 6.9224 - val_loss: 8.6937
Epoch 844/1000- 0s - loss: 6.8973 - val_loss: 8.4884
Epoch 845/1000- 0s - loss: 6.8797 - val_loss: 8.4416
Epoch 846/1000- 0s - loss: 6.8801 - val_loss: 8.4058
Epoch 847/1000- 0s - loss: 6.8972 - val_loss: 8.2906
Epoch 848/1000- 0s - loss: 6.9202 - val_loss: 8.2737
Epoch 849/1000- 0s - loss: 6.9373 - val_loss: 8.3648
Epoch 850/1000- 0s - loss: 6.8793 - val_loss: 8.4798
Epoch 851/1000- 0s - loss: 6.8842 - val_loss: 8.5027
Epoch 852/1000- 0s - loss: 6.8715 - val_loss: 8.4512
Epoch 853/1000- 0s - loss: 6.8770 - val_loss: 8.4394
Epoch 854/1000- 0s - loss: 6.8744 - val_loss: 8.4472
Epoch 855/1000- 0s - loss: 6.8755 - val_loss: 8.4393
Epoch 856/1000- 0s - loss: 6.8792 - val_loss: 8.3980
Epoch 857/1000- 0s - loss: 6.8804 - val_loss: 8.4114
Epoch 858/1000- 0s - loss: 6.8524 - val_loss: 8.5629
Epoch 859/1000- 0s - loss: 6.8745 - val_loss: 8.6568
Epoch 860/1000- 0s - loss: 6.8859 - val_loss: 8.5767
Epoch 861/1000- 0s - loss: 6.8793 - val_loss: 8.3959
Epoch 862/1000- 0s - loss: 6.8933 - val_loss: 8.3341
Epoch 863/1000- 0s - loss: 6.9167 - val_loss: 8.3749
Epoch 864/1000- 0s - loss: 6.8659 - val_loss: 8.5399
Epoch 865/1000- 0s - loss: 6.8788 - val_loss: 8.5804
Epoch 866/1000- 0s - loss: 6.8750 - val_loss: 8.5788
Epoch 867/1000- 0s - loss: 6.8661 - val_loss: 8.5265
Epoch 868/1000- 0s - loss: 6.8834 - val_loss: 8.4946
Epoch 869/1000- 0s - loss: 6.8712 - val_loss: 8.5024
Epoch 870/1000- 0s - loss: 6.8632 - val_loss: 8.4812
Epoch 871/1000- 0s - loss: 6.8693 - val_loss: 8.4996
Epoch 872/1000- 0s - loss: 6.8648 - val_loss: 8.4457
Epoch 873/1000- 0s - loss: 6.8741 - val_loss: 8.3863
Epoch 874/1000- 0s - loss: 6.9042 - val_loss: 8.3653
Epoch 875/1000- 0s - loss: 6.8735 - val_loss: 8.4483
Epoch 876/1000- 0s - loss: 6.8764 - val_loss: 8.5491
Epoch 877/1000- 0s - loss: 6.8698 - val_loss: 8.5771
Epoch 878/1000- 0s - loss: 6.8601 - val_loss: 8.5636
Epoch 879/1000- 0s - loss: 6.8552 - val_loss: 8.5683
Epoch 880/1000- 0s - loss: 6.8534 - val_loss: 8.5752
Epoch 881/1000- 0s - loss: 6.8544 - val_loss: 8.5957
Epoch 882/1000- 0s - loss: 6.8548 - val_loss: 8.5939
Epoch 883/1000- 0s - loss: 6.8577 - val_loss: 8.5866
Epoch 884/1000- 0s - loss: 6.8773 - val_loss: 8.5952
Epoch 885/1000- 0s - loss: 6.8756 - val_loss: 8.5630
Epoch 886/1000- 0s - loss: 6.8668 - val_loss: 8.4512
Epoch 887/1000- 0s - loss: 6.8745 - val_loss: 8.4540
Epoch 888/1000- 0s - loss: 6.8641 - val_loss: 8.4412
Epoch 889/1000- 0s - loss: 6.8782 - val_loss: 8.5320
Epoch 890/1000- 0s - loss: 6.8415 - val_loss: 8.5606
Epoch 891/1000- 0s - loss: 6.8534 - val_loss: 8.5682
Epoch 892/1000- 0s - loss: 6.8858 - val_loss: 8.4739
Epoch 893/1000- 0s - loss: 6.8534 - val_loss: 8.4575
Epoch 894/1000- 0s - loss: 6.8581 - val_loss: 8.4104
Epoch 895/1000- 0s - loss: 6.8834 - val_loss: 8.4251
Epoch 896/1000- 0s - loss: 6.8710 - val_loss: 8.4780
Epoch 897/1000- 0s - loss: 6.8870 - val_loss: 8.4867
Epoch 898/1000- 0s - loss: 6.8274 - val_loss: 8.6073
Epoch 899/1000- 0s - loss: 6.8772 - val_loss: 8.7308
Epoch 900/1000- 0s - loss: 6.8722 - val_loss: 8.6132
Epoch 901/1000- 0s - loss: 6.8604 - val_loss: 8.6610
Epoch 902/1000- 0s - loss: 6.8541 - val_loss: 8.6173
Epoch 903/1000- 0s - loss: 6.8730 - val_loss: 8.5093
Epoch 904/1000- 0s - loss: 6.8426 - val_loss: 8.5159
Epoch 905/1000- 0s - loss: 6.8429 - val_loss: 8.5200
Epoch 906/1000- 0s - loss: 6.8439 - val_loss: 8.5554
Epoch 907/1000- 0s - loss: 6.8537 - val_loss: 8.7608
Epoch 908/1000- 0s - loss: 6.8801 - val_loss: 8.8564
Epoch 909/1000- 0s - loss: 6.9187 - val_loss: 8.8065
Epoch 910/1000- 0s - loss: 6.8853 - val_loss: 8.7571
Epoch 911/1000- 0s - loss: 6.8544 - val_loss: 8.6461
Epoch 912/1000- 0s - loss: 6.8342 - val_loss: 8.5683
Epoch 913/1000- 0s - loss: 6.8823 - val_loss: 8.4780
Epoch 914/1000- 0s - loss: 6.8524 - val_loss: 8.5182
Epoch 915/1000- 0s - loss: 6.8370 - val_loss: 8.5544
Epoch 916/1000- 0s - loss: 6.8490 - val_loss: 8.5250
Epoch 917/1000- 0s - loss: 6.8746 - val_loss: 8.6496
Epoch 918/1000- 0s - loss: 6.8511 - val_loss: 8.6746
Epoch 919/1000- 0s - loss: 6.8391 - val_loss: 8.6202
Epoch 920/1000- 0s - loss: 6.8378 - val_loss: 8.5823
Epoch 921/1000- 0s - loss: 6.8284 - val_loss: 8.6033
Epoch 922/1000- 0s - loss: 6.8513 - val_loss: 8.4982
Epoch 923/1000- 0s - loss: 6.8424 - val_loss: 8.4665
Epoch 924/1000- 0s - loss: 6.8490 - val_loss: 8.5250
Epoch 925/1000- 0s - loss: 6.8479 - val_loss: 8.5245
Epoch 926/1000- 0s - loss: 6.8417 - val_loss: 8.4306
Epoch 927/1000- 0s - loss: 6.8274 - val_loss: 8.4696
Epoch 928/1000- 0s - loss: 6.8407 - val_loss: 8.4810
Epoch 929/1000- 0s - loss: 6.8413 - val_loss: 8.4988
Epoch 930/1000- 0s - loss: 6.8362 - val_loss: 8.5352
Epoch 931/1000- 0s - loss: 6.8365 - val_loss: 8.6174
Epoch 932/1000- 0s - loss: 6.8309 - val_loss: 8.6056
Epoch 933/1000- 0s - loss: 6.8295 - val_loss: 8.5836
Epoch 934/1000- 0s - loss: 6.8431 - val_loss: 8.6144
Epoch 935/1000- 0s - loss: 6.8263 - val_loss: 8.5581
Epoch 936/1000- 0s - loss: 6.8532 - val_loss: 8.5515
Epoch 937/1000- 0s - loss: 6.8281 - val_loss: 8.5130
Epoch 938/1000- 0s - loss: 6.8655 - val_loss: 8.4709
Epoch 939/1000- 0s - loss: 6.8737 - val_loss: 8.5025
Epoch 940/1000- 0s - loss: 6.8258 - val_loss: 8.4765
Epoch 941/1000- 0s - loss: 6.8172 - val_loss: 8.4921
Epoch 942/1000- 0s - loss: 6.8489 - val_loss: 8.6057
Epoch 943/1000- 0s - loss: 6.8361 - val_loss: 8.5947
Epoch 944/1000- 0s - loss: 6.8388 - val_loss: 8.5395
Epoch 945/1000- 0s - loss: 6.8118 - val_loss: 8.5427
Epoch 946/1000- 0s - loss: 6.8248 - val_loss: 8.5310
Epoch 947/1000- 0s - loss: 6.8355 - val_loss: 8.5500
Epoch 948/1000- 0s - loss: 6.8282 - val_loss: 8.5621
Epoch 949/1000- 0s - loss: 6.8307 - val_loss: 8.6018
Epoch 950/1000- 0s - loss: 6.8149 - val_loss: 8.6919
Epoch 951/1000- 0s - loss: 6.8535 - val_loss: 8.8221
Epoch 952/1000- 0s - loss: 6.7969 - val_loss: 8.6478
Epoch 953/1000- 0s - loss: 6.8059 - val_loss: 8.5851
Epoch 954/1000- 0s - loss: 6.8304 - val_loss: 8.5123
Epoch 955/1000- 0s - loss: 6.8407 - val_loss: 8.5116
Epoch 956/1000- 0s - loss: 6.8188 - val_loss: 8.5680
Epoch 957/1000- 0s - loss: 6.8065 - val_loss: 8.6502
Epoch 958/1000- 0s - loss: 6.8422 - val_loss: 8.6930
Epoch 959/1000- 0s - loss: 6.8171 - val_loss: 8.5316
Epoch 960/1000- 0s - loss: 6.8234 - val_loss: 8.3590
Epoch 961/1000- 0s - loss: 6.8595 - val_loss: 8.3428
Epoch 962/1000- 0s - loss: 6.8903 - val_loss: 8.3553
Epoch 963/1000- 0s - loss: 6.8414 - val_loss: 8.4878
Epoch 96