题目
解法1:dfs暴力
class Solution:def longestIncreasingPath(self, matrix: List[List[int]]) -> int:def dfs(i,j,prev):if i<0 or i>=m or j<0 or j>=n or matrix[i][j]<=prev:return 0#print(i,j)tmp = 0tmp = max(dfs(i+1,j,matrix[i][j]),dfs(i,j+1,matrix[i][j]),dfs(i-1,j,matrix[i][j]),dfs(i,j-1,matrix[i][j])) + 1return tmpif not matrix or not matrix[0]:return 0m,n = len(matrix),len(matrix[0])#dfs(0,1,float('-inf'))ans = 0for i in range(m):for j in range(n):print((i,j),dfs(i,j,float('-inf')))ans = max(dfs(i,j,float('-inf')),ans)return ans
解法2:dfs+memorization
class Solution:def longestIncreasingPath(self, matrix: List[List[int]]) -> int:def dfs(i,j,prev):if i<0 or i>=m or j<0 or j>=n or matrix[i][j]<=prev:return 0if memo[i][j] != float('-inf'):return memo[i][j]memo[i][j] = max(dfs(i+1,j,matrix[i][j]),dfs(i,j+1,matrix[i][j]),dfs(i-1,j,matrix[i][j]),dfs(i,j-1,matrix[i][j])) + 1return memo[i][j]if not matrix or not matrix[0]:return 0m,n = len(matrix),len(matrix[0])ans = 0memo = [[float('-inf')]*n for _ in range(m)]for i in range(m):for j in range(n):ans = max(dfs(i,j,float('-inf')),ans)return ans
C++版本:
class Solution {
public:int longestIncreasingPath(vector<vector<int>>& matrix) {
if (matrix.empty() || matrix[0].empty()) return 0;int ans = 0;int m = matrix.size(), n = matrix[0].size();vector<vector<int>> memo(m,vector<int>(n,-INT_MAX));for (int i=0;i<matrix.size();i++){
for (int j=0;j<matrix[0].size();j++){
ans = max(ans,dfs(i,j,-INT_MAX,memo,matrix));}}return ans;}int dfs(int i, int j, int prev, vector<vector<int>>& memo, vector<vector<int>>& matrix){
if (i<0 || i>=matrix.size() || j<0 || j>=matrix[0].size() || matrix[i][j]<=prev) {
return 0;}if (memo[i][j] != -INT_MAX) return memo[i][j];memo[i][j] = max(dfs(i+1,j,matrix[i][j],memo,matrix)+1,memo[i][j]);memo[i][j] = max(dfs(i,j+1,matrix[i][j],memo,matrix)+1,memo[i][j]);memo[i][j] = max(dfs(i-1,j,matrix[i][j],memo,matrix)+1,memo[i][j]);memo[i][j] = max(dfs(i,j-1,matrix[i][j],memo,matrix)+1,memo[i][j]);return memo[i][j];}
};
解法3:dp+topology sort
分三步:
- 建图
- 获取拓扑序
- 根据拓扑序进行dp
dp状态转移方程为:dp[A[i]] = max(dpA[j]+1),A[i]为节点标号,A[j]为指向A[i]节点的所有节点标号,i,j代表节点在拓扑序中的下标位置
其实广义的dp就是根据拓扑序来转移状态的,只是平常大部分dp的顺序都显而易见,而这边需要手动找到拓扑序
宏观上理解这种解法:拓扑排序是为了保证我们dp的子问题已经被计算。举个例子
class Solution:def longestIncreasingPath(self, matrix: List[List[int]]) -> int:if not matrix or not matrix[0]: return 0# construct graphgraph = collections.defaultdict(list)m,n = len(matrix),len(matrix[0])indegrees = [[0]*n for _ in range(m)]dirs = [[-1,0],[1,0],[0,1],[0,-1]]for i in range(m):for j in range(n):for d in dirs:x = i+d[0]y = j+d[1]if 0<=x<m and 0<=y<n and matrix[i][j]<matrix[x][y]:graph[(x,y)].append((i,j))indegrees[i][j] += 1# topology sortq = collections.deque()for i in range(m):for j in range(n):if indegrees[i][j] == 0:q.append((i,j))order = []while q:i,j = q.popleft()order.append((i,j))for x,y in graph[(i,j)]:indegrees[x][y] -= 1if indegrees[x][y] == 0:q.append((x,y))# dynamic programming according to topology orderdp = [[1]*n for _ in range(m)]for i in range(m*n-1,-1,-1):x,y = order[i][0],order[i][1]for x1,y1 in graph[(x,y)]:dp[x][y] = max(dp[x][y],(dp[x1][y1]+1))ans = 0for row in dp:for num in row:ans = max(ans,num)return ans
其实用拓扑排序并不需要后面的dp,这是一个Longest path in a DAG的问题,参考这边:https://www.geeksforgeeks.org/find-longest-path-directed-acyclic-graph/
class Solution {
public:int longestIncreasingPath(vector<vector<int>>& matrix) {
int m = matrix.size(), n = matrix[0].size();vector<vector<int>> indegrees(m,vector<int>(n,0));vector<pair<int,int>> dirs{
{
0,1},{
0,-1},{
1,0},{
-1,0}};for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
for(auto& d : dirs){
int x = i+d.first;int y = j+d.second;if(x < 0 || y < 0 || x >= m || y >= n) continue;if(matrix[i][j] > matrix[x][y]){
indegrees[i][j]++;}}}}queue<pair<int,int>> q;for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
if(indegrees[i][j] == 0) q.push(make_pair(i,j));}}int lenth = 0;while(!q.empty()){
int size = q.size();for(int i=0;i<size;i++){
auto curr = q.front();q.pop();for(auto& d : dirs){
int x = curr.first + d.first;int y = curr.second + d.second;if(x < 0 || y < 0 || x >= m || y >= n) continue;if(matrix[x][y] > matrix[curr.first][curr.second]){
indegrees[x][y]--;if(indegrees[x][y] == 0) q.push(make_pair(x,y));}}}lenth++;}return lenth;}
};