快速翻阅,快速学习
正如之前所述,梯度矢量具有方向和大小。梯度下降法算法用梯度乘以一个称为学习速率(有时也称为步长)的标量,以确定下一个点的位置。例如,如果梯度大小为 2.5,学习速率为 0.01,则梯度下降法算法会选择距离前一个点 0.025 的位置作为下一个点。
超参数是编程人员在机器学习算法中用于调整的旋钮。大多数机器学习编程人员会花费相当多的时间来调整学习速率。如果您选择的学习速率过小,就会花费太长的学习时间:
图 6. 学习速率过小
相反,如果您指定的学习速率过大,下一个点将永远在 U 形曲线的底部随意弹跳,就好像量子力学实验出现了严重错误一样:
图 7. 学习速率过大
每个回归问题都存在一个金发姑娘学习速率。“金发姑娘”值与损失函数的平坦程度相关。如果您知道损失函数的梯度较小,则可以放心地试着采用更大的学习速率,以补偿较小的梯度并获得更大的步长。
图 8. 学习速率恰恰好
------------------------------------------------------知识点分界线---------------------------------------
详细了解理想的学习速率。
一维空间中的理想学习速率是(f(x) 对 x 的二阶导数的倒数)。
二维或多维空间中的理想学习速率是海森矩阵(由二阶偏导数组成的矩阵)的倒数。
上面是海参矩阵。。。。。
黑塞矩阵(Hessian Matrix),又译作海森矩阵、海瑟矩阵、海塞矩阵等,是一个多元函数的二阶偏导数构成的方阵,描述了函数的局部曲率。黑塞矩阵最早于19世纪由德国数学家Ludwig Otto Hesse提出,并以其名字命名。黑塞矩阵常用于牛顿法解决优化问题,利用黑塞矩阵可判定多元函数的极值问题。在工程实际问题的优化设计中,所列的目标函数往往很复杂,为了使问题简化,常常将目标函数在某点邻域展开成泰勒多项式来逼近原函数,此时函数在某点泰勒展开式的矩阵形式中会涉及到黑塞矩阵。
广义凸函数的情况则更为复杂。
------------------------------------------------------------关键词分界线------------------------------
划重点!!!关键字词:
1.超参数 (hyperparameter)
在模型训练的连续过程中,您调节的“旋钮”。例如,学习速率就是一种超参数。
与参数相对。
参数 (parameter)
机器学习系统自行训练的模型的变量。例如,权重就是一种参数,它们的值是机器学习系统通过连续的训练迭代逐渐学习到的。与超参数相对。
2.步长 (step size)
是学习速率的同义词。
3.学习速率 (learning rate)
在训练模型时用于梯度下降的一个变量。在每次迭代期间,梯度下降法都会将学习速率与梯度相乘。得出的乘积称为梯度步长。
学习速率是一个重要的超参数。