Asset Pricing:Preference over Risk and Uncertainty
Suppose there are X j , X k , X j = [ x j 1 , x j 2 , ? , x j S ] X^j,X^k,X^j=[x_j^1,x_j^2,\cdots,x_j^S] Xj,Xk,Xj=[xj1?,xj2?,?,xjS?] , how to rank?
-
State-by-State Dominance:given two random variables X , Y X,Y X,Y defined over the state space ( Ω , F , P ) (\Omega,F,P) (Ω,F,P), we say that Y Y Y state-by-state dominates X X X if ? ω ∈ Ω , X ( ω ) ≤ Y ( ω ) \forall\omega\in\Omega,X(\omega)\leq Y(\omega) ?ω∈Ω,X(ω)≤Y(ω).
X j ? X k ? x s j ≥ x s k , ? s X^j\succ X^k\Leftrightarrow x_s^j\geq x_s^k,\forall s Xj?Xk?xsj?≥xsk?,?s?
for example: [ 3 1 2 ] \left[\begin{matrix}3\\1\\2\end{matrix}\right] ???312???? state-by-state dominates [ 2 1 0 ] \left[\begin{matrix}2\\1\\0\end{matrix}\right] ???210????
Problem : 不符合完备性,如: [ 3 1 2 ] 、 [ 4 0 1 ] \left[\begin{matrix}3\\1\\2\end{matrix}\right]、\left[\begin{matrix}4\\0\\1\end{matrix}\right] ???312????、???401??????无法比较。
-
Mean-Variance preference:assume that we like more expected return and less volatility.
suppose we rank investments according to which Sharpe ratio is highest:
S x = E [ R x ] ? R f σ ( R x ) ∈ R > ? ? S_x=\dfrac{E[R_x]-R^f}{\sigma(R_x)}\in R\\>\Leftrightarrow\succ Sx?=σ(Rx?)E[Rx?]?Rf?∈R>?? -
Stochastic Dominance : Ranking over Probability Distribution
Definition(First Order Stochastic Dominance,FOSD):
Let F A , F B F_A,F_B FA?,FB?? denotes two CDFs of two random investments, defined on [a,b], we say that F A F_A FA?? FOSD F B F_B FB?? if ? x ∈ [ a , b ] , F A ( x ) ≤ F B ( x ) \forall x\in[a,b],F_A(x)\leq F_B(x) ?x∈[a,b],FA?(x)≤FB?(x)?.
State-by-State Dominance → \to →? FOSD
Definition(Second Order Stochastic Dominance,SOSD):
Let F A , F B F_A,F_B FA?,FB? denotes two CDFs of two random investments, defined on [a,b], we say that F A F_A FA? SOSD F B F_B FB? if ? x ∈ [ a , b ] , ∫ a x [ F B ( t ) ? F A ( t ) d t ] ≥ 0 \forall x\in[a,b],\int_a^x[F_B(t)-F_A(t)dt]\geq0 ?x∈[a,b],∫ax?[FB?(t)?FA?(t)dt]≥0.
FOSD → \to → SOSD
-
Mean-Preserving Spread :
X A X_A XA?? is MPS of X B X_B XB? if X A = X B + ε , ε X_A=X_B+\varepsilon,\varepsilon XA?=XB?+ε,ε is independent of A and B, E ( ε ) = 0 , σ ( ε ) > 0 E(\varepsilon)=0,\sigma(\varepsilon)>0 E(ε)=0,σ(ε)>0?
X A X_A XA? is risker than X B X_B XB? : V a r ( X A ) = V a r ( X B ) + V a r ( ε ) , E [ ε ∣ X A ] = E [ ε ] = 0 Var(X_A)=Var(X_B)+Var(\varepsilon),E[\varepsilon|X_A]=E[\varepsilon]=0 Var(XA?)=Var(XB?)+Var(ε),E[ε∣XA?]=E[ε]=0
Proposition : X A ? F A , X B ? F B X_A\sim F_A,X_B\sim F_B XA??FA?,XB??FB?? , defined on [a,b], E [ X A ] = E [ X B ] E[X_A]=E[X_B] E[XA?]=E[XB?]?, then F A F_A FA?? SOSD F B F_B FB?? iff X B X_B XB??? is MPS of X A X_A XA???
proof(长篇警告!):
-
SOSD → \to →? MPS:
首先证明Lemma: X B X_B XB? MPS X A ? ? X_A\Leftrightarrow \forall XA??? V(·) concave , E [ V ( X A ) ] ≥ E [ V ( X B ) ] E[V(X_A)]\geq E[V(X_B)] E[V(XA?)]≥E[V(XB?)]?
我们知道 Jessan’s inequality : for any concave function V(x) , E [ V ( x ) ] ≤ V [ E ( x ) ] E[V(x)]\leq V[E(x)] E[V(x)]≤V[E(x)]?
同时有:Law of iterated Expectation : E [ x ] = E [ E [ x ∣ y ] ] E[x]=E[E[x|y]] E[x]=E[E[x∣y]]?
X B X_B XB?? MPS X A X_A XA?:
E [ V ( X B ) ] = E [ V ( X A + ε ) ] = E [ E [ V ( X A + ε ) ∣ X A ] ] ≤ E [ V ( E ( X A + ε ∣ X A ) ) ] = E [ V ( X A ) ] E[V(X_B)]=E[V(X_A+\varepsilon)]=E[E[V(X_A+\varepsilon)|X_A]]\\\leq E[V(E(X_A+\varepsilon|X_A))]=E[V(X_A)] E[V(XB?)]=E[V(XA?+ε)]=E[E[V(XA?+ε)∣XA?]]≤E[V(E(XA?+ε∣XA?))]=E[V(XA?)]
Next 证明: ? \forall ? V(·) concave , E [ V ( X A ) ] ≥ E [ V ( X B ) ] → X B E[V(X_A)]\geq E[V(X_B)]\to X_B E[V(XA?)]≥E[V(XB?)]→XB? MPS X A X_A XA??First we proof:if ? V ( ? ) \forall V(·) ?V(?)??? concave, E [ V ( X A ) ] ≥ E [ V ( X B ) ] → T ( t ) ≡ ∫ a t [ F B ( s ) ? F A ( s ) ] d s ≥ 0 , ? t , T ( b ) = 0 E[V(X_A)]\geq E[V(X_B)]\to T(t)\equiv\int_a^t[F_B(s)-F_A(s)]ds\geq0,\forall t,T(b)=0 E[V(XA?)]≥E[V(XB?)]→T(t)≡∫at?[FB?(s)?FA?(s)]ds≥0,?t,T(b)=0?
Consider the subset of increasing, concave functions V z ( x ) ≡ min ? ( x , z ) V_z(x)\equiv\min(x,z) Vz?(x)≡min(x,z). The derivative of V z ( x ) V_z(x) Vz?(x) is 1 for x < z x<z x<z and 0 for x > z x>z x>z. Integrating by parts:
0 ≤ E [ V z ( X A ) ] ? E [ V z ( X B ) ] = ∫ a b V z ( t ) [ d F A ( t ) ? d F B ( t ) ] = V z ( t ) [ F A ( t ) ? F B ( t ) ] ∣ a b ? ∫ a b V z ′ ( t ) [ F A ( t ) ? F B ( t ) ] d t = ? ∫ a z [ F A ( t ) ? F B ( t ) ] d t ≡ T ( z ) 0\leq E[V_z(X_A)]-E[V_z(X_B)]=\int_a^bV_z(t)[dF_A(t)-dF_B(t)]\\=V_z(t)[F_A(t)-F_B(t)]|_a^b-\int_a^bV_z'(t)[F_A(t)-F_B(t)]dt\\=-\int_a^z[F_A(t)-F_B(t)]dt\equiv T(z) 0≤E[Vz?(XA?)]?E[Vz?(XB?)]=∫ab?Vz?(t)[dFA?(t)?dFB?(t)]=Vz?(t)[FA?(t)?FB?(t)]∣ab??∫ab?Vz′?(t)[FA?(t)?FB?(t)]dt=?∫az?[FA?(t)?FB?(t)]dt≡T(z)
As this holds for all utility functions indexed by z, T ( z ) T(z) T(z) must be nonnegative for all z.Next, we proof : T ( t ) ≡ ∫ a t [ F B ( s ) ? F A ( s ) ] d s ≥ 0 , ? t , T ( b ) = 0 → T(t)\equiv\int_a^t[F_B(s)-F_A(s)]ds\geq0,\forall t,T(b)=0\to T(t)≡∫at?[FB?(s)?FA?(s)]ds≥0,?t,T(b)=0→? X B X_B XB?? MPS X A X_A XA??
Assume E A ( x ) = E B ( x ) = 0 E_A(x)=E_B(x)=0 EA?(x)=EB?(x)=0?. Define :
F A I ( z ) ≡ ∫ a z F A ( x ) d x , F B I ( z ) ≡ ∫ a z F B ( x ) d x F A I ( a ) = F B I ( a ) = 0 , F A I ( b ) = F B I ( b ) = b F B I ( z ) ≥ F A I ( z ) F_{AI}(z)\equiv\int_a^zF_A(x)dx,F_{BI}(z)\equiv\int_a^zF_B(x)dx\\F_{AI}(a)=F_{BI}(a)=0,F_{AI}(b)=F_{BI}(b)=b\\F_{BI}(z)\geq F_{AI}(z) FAI?(z)≡∫az?FA?(x)dx,FBI?(z)≡∫az?FB?(x)dxFAI?(a)=FBI?(a)=0,FAI?(b)=FBI?(b)=bFBI?(z)≥FAI?(z)
Assume that the latter is strictly true for z ∈ ( a , b ) z\in(a,b) z∈(a,b)????. ? If not the following construction can be applied separately to each interval in which the strict inequality does holds. Because F A I 、 F B I F_{AI}、F_{BI} FAI?、FBI??? are integrals of increasing, nonnegative functions, they are both increasing, convex functions as shown in the figure.
Now pick any point z 0 z_0 z0???? on F B I F_{BI} FBI???? and consider a tangent line, L L L???, extended until it intersects F A I F_{AI} FAI???? at points z ′ , z ′ ′ z',z'' z′,z′′???. These intersections must occur in the interval [a,b] because F A I = F B I F_{AI}=F_{BI} FAI?=FBI???? at those two endpoints. Define H 1 ( z ) = F A I ( z ) H_1(z)=F_{AI}(z) H1?(z)=FAI?(z)??? for z ≤ z ′ , z ≥ z ′ ′ z\leq z',z\geq z'' z≤z′,z≥z′′??? and H 1 ( z ) = L ( z ) H_1(z)=L(z) H1?(z)=L(z)??? for z ′ < z < z ′ ′ z'<z<z'' z′<z<z′′???.
H 1 H_1 H1? is the integral of some cumulative distribution function because it is increasing and convex. Furthermore, as its derivative is constant between z ′ , z ′ ′ z',z'' z′,z′′?, the cumulative distribution to which is belongs is also constant over that interval. This means that there is no probability mass within the interval ( z ′ , z ′ ′ ) (z',z'') (z′,z′′) for the distribution H 1 H_1 H1?. In other words, the probability mass has been spread to the points z ′ , z ′ ′ z',z'' z′,z′′. The kinks in H 1 H_1 H1? at those points mark the atoms of added probability. Furthermofe:
E [ X A ? z ] = ∫ a b t [ d F A ( t ) ? d H 1 ( t ) ] = t [ F A ( t ) ? H 1 ( t ) ] ∣ a b ? ∫ a b [ F A ( t ) ? H 1 ( t ) ] d t = 0 E[X_A-z]=\int_a^bt[dF_A(t)-dH_1(t)]=t[F_A(t)-H_1(t)]|_a^b-\int_a^b[F_A(t)-H_1(t)]dt=0 E[XA??z]=∫ab?t[dFA?(t)?dH1?(t)]=t[FA?(t)?H1?(t)]∣ab??∫ab?[FA?(t)?H1?(t)]dt=0
So the underlying H 1 H_1 H1???? distribution has the same mean as the F A F_A FA??? distribution. Thus, H 1 H_1 H1??? is a simple mean-preserving spread of F A F_A FA???.H 2 H_2 H2????? can be constructed by picking a point between B and z 0 z_0 z0????? and a point between z 0 z_0 z0????? and A, then running their tangents lines until they intersect with H 1 H_1 H1?????. H 2 H_2 H2????? then represents a probability distribution that differs from H 1 H_1 H1????? by two simple mean preserving spreads. Continuing in this fashion H n → F B I H_n\to F_{BI} Hn?→FBI????? pointwise. So in the limit, the distribution F A F_A FA????? is the same as the distribution F B F_B FB????? plus a number of simple mean-preserving spreads. If F A , F B F_A,F_B FA?,FB?????? are discrete distributions, then the match can be achieved with a finite number of simple mean-preserving spreads.
Lemma得以证明。
然后我们来证明: ? x ∈ [ a , b ] , ∫ a x F B ( t ) d t ≥ ∫ a x F A ( t ) d t → ? V ( ? ) \forall x\in[a,b],\int_a^xF_B(t)dt\geq\int_a^xF_A(t)dt\to \forall V(·) ?x∈[a,b],∫ax?FB?(t)dt≥∫ax?FA?(t)dt→?V(?)? concave on [a,b], E [ V ( X A ) ] ≥ E [ V ( X B ) ] E[V(X_A)]\geq E[V(X_B)] E[V(XA?)]≥E[V(XB?)]?,即 ∫ a b V ( t ) d F A ( t ) ≥ ∫ a b V ( t ) d F B ( t ) ( ? ? ) \int_a^bV(t)dF_A(t)\geq\int_a^bV(t)dF_B(t)\ (**) ∫ab?V(t)dFA?(t)≥∫ab?V(t)dFB?(t) (??)??
Define S A ( x ) = ∫ a x F A ( t ) d t , S B ( x ) = ∫ a x F B ( t ) d t , F A ( b ) = F B ( b ) = 1 , F A ( a ) = F B ( a ) = 0 S_A(x)=\int_a^xF_A(t)dt,S_B(x)=\int_a^xF_B(t)dt,F_A(b)=F_B(b)=1,F_A(a)=F_B(a)=0 SA?(x)=∫ax?FA?(t)dt,SB?(x)=∫ax?FB?(t)dt,FA?(b)=FB?(b)=1,FA?(a)=FB?(a)=0???
∫ a b V ( t ) d F B ( t ) = [ V ( t ) F B ( t ) ] ∣ a b ? ∫ a b F B ( t ) d V ( t ) = V ( b ) ? ∫ a b F B ( t ) V ′ ( t ) d t = V ( b ) ? ∫ a b V ′ ( t ) d S B ( t ) = V ( b ) ? [ V ′ ( t ) ∫ a t F B ( w ) d w ] ∣ a b + ∫ a b ( ∫ a t F B ( w ) d w ) d V ′ ( t ) = V ( b ) ? V ′ ( b ) ∫ a b F B ( w ) d w + ∫ a b ( ∫ a t F B ( w ) d w ) V ′ ′ ( t ) d t \int_a^bV(t)dF_B(t)=[V(t)F_B(t)]|_a^b-\int_a^bF_B(t)dV(t)=V(b)-\int_a^bF_B(t)V'(t)dt=V(b)-\int_a^bV'(t)dS_B(t)\\=V(b)-[V'(t)\int_a^tF_B(w)dw]|_a^b+\int_a^b(\int_a^tF_B(w)dw)dV'(t)\\=V(b)-V'(b)\int_a^bF_B(w)dw+\int_a^b(\int_a^tF_B(w)dw)V''(t)dt ∫ab?V(t)dFB?(t)=[V(t)FB?(t)]∣ab??∫ab?FB?(t)dV(t)=V(b)?∫ab?FB?(t)V′(t)dt=V(b)?∫ab?V′(t)dSB?(t)=V(b)?[V′(t)∫at?FB?(w)dw]∣ab?+∫ab?(∫at?FB?(w)dw)dV′(t)=V(b)?V′(b)∫ab?FB?(w)dw+∫ab?(∫at?FB?(w)dw)V′′(t)dt
∫ a b F B ( w ) d w = [ F B ( w ) w ] ∣ a b ? ∫ a b w f B ( w ) d w = b ? E ( X B ) , E ( X B ) = E ( X A ) \int_a^bF_B(w)dw=[F_B(w)w]|_a^b-\int_a^bwf_B(w)dw=b-E(X_B),E(X_B)=E(X_A) ∫ab?FB?(w)dw=[FB?(w)w]∣ab??∫ab?wfB?(w)dw=b?E(XB?),E(XB?)=E(XA?)?
∫ a b V ( t ) d F B ( t ) = V ( b ) ? V ′ ( b ) ( b ? E ( X B ) ) + ∫ a b ( ∫ a t F B ( w ) d w ) V ′ ′ ( t ) d t \int_a^bV(t)dF_B(t)=V(b)-V'(b)(b-E(X_B))+\int_a^b(\int_a^tF_B(w)dw)V''(t)dt ∫ab?V(t)dFB?(t)=V(b)?V′(b)(b?E(XB?))+∫ab?(∫at?FB?(w)dw)V′′(t)dt
∫ a b V ( t ) d F A ( t ) = V ( b ) ? V ′ ( b ) ( b ? E ( X A ) ) + ∫ a b ( ∫ a t F A ( w ) d w ) V ′ ′ ( t ) d t \int_a^bV(t)dF_A(t)=V(b)-V'(b)(b-E(X_A))+\int_a^b(\int_a^tF_A(w)dw)V''(t)dt ∫ab?V(t)dFA?(t)=V(b)?V′(b)(b?E(XA?))+∫ab?(∫at?FA?(w)dw)V′′(t)dt?
( ? ? ) (**) (??)? implies ∫ a b ( ∫ a t F A ( w ) d w ) V ′ ′ ( t ) d t ≥ ∫ a b ( ∫ a t F B ( w ) d w ) V ′ ′ ( t ) d t \int_a^b(\int_a^tF_A(w)dw)V''(t)dt\geq\int_a^b(\int_a^tF_B(w)dw)V''(t)dt ∫ab?(∫at?FA?(w)dw)V′′(t)dt≥∫ab?(∫at?FB?(w)dw)V′′(t)dt
SOSD → ∫ a t F A ( w ) d w ≤ ∫ a t F B ( w ) d w , V ′ ′ ( t ) < 0 → ( ? ? ) \to\int_a^tF_A(w)dw\leq\int_a^tF_B(w)dw,V''(t)<0\to (**) →∫at?FA?(w)dw≤∫at?FB?(w)dw,V′′(t)<0→(??)?? 成立
所以SOSD → \to → ? V ( ? ) \forall V(·) ?V(?) concave , E [ V ( X A ) ] ≥ E [ V ( X B ) ] E[V(X_A)]\geq E[V(X_B)] E[V(XA?)]≥E[V(XB?)] ? \Leftrightarrow ? X B X_B XB? MPS X A X_A XA?
-
MPS → \to →? SOSD:
conduct : V w ( t ) = { t , t ≤ w w , t ≥ w , t ∈ [ a , b ] V_w(t)=\begin{cases}t,t\leq w\\w,t\geq w\end{cases},t\in[a,b] Vw?(t)={ t,t≤ww,t≥w?,t∈[a,b]?? (一族符合条件的函数)?
∫ a b V w ( t ) d F A ( t ) = ∫ a w t d F A ( t ) + ∫ w b w d F A ( t ) = [ t F A ( t ) ] ∣ a w ? ∫ a w F A ( t ) d t + w [ F A ( t ) ] ∣ w b = w F A ( w ) ? ∫ a w F A ( t ) d t + w [ 1 ? F A ( w ) ] = w ? ∫ a w F A ( t ) d t \int_a^bV_w(t)dF_A(t)=\int_a^wtdF_A(t)+\int_w^bwdF_A(t)=[tF_A(t)]|_a^w-\int_a^wF_A(t)dt+w[F_A(t)]|_w^b\\=wF_A(w)-\int_a^wF_A(t)dt+w[1-F_A(w)]\\=w-\int_a^wF_A(t)dt ∫ab?Vw?(t)dFA?(t)=∫aw?tdFA?(t)+∫wb?wdFA?(t)=[tFA?(t)]∣aw??∫aw?FA?(t)dt+w[FA?(t)]∣wb?=wFA?(w)?∫aw?FA?(t)dt+w[1?FA?(w)]=w?∫aw?FA?(t)dt
X A X_A XA? MPS X B X_B XB? ? \Leftrightarrow ? ? V ( ? ) \forall V(·) ?V(?) concave on [a,b], E [ V ( X A ) ] ≥ E [ V ( X B ) ] E[V(X_A)]\geq E[V(X_B)] E[V(XA?)]≥E[V(XB?)],即 ∫ a b V ( t ) d F A ( t ) ≥ ∫ a b V ( t ) d F B ( t ) \int_a^bV(t)dF_A(t)\geq\int_a^bV(t)dF_B(t) ∫ab?V(t)dFA?(t)≥∫ab?V(t)dFB?(t)?
∫ a b V ( t ) d F A ( t ) ≥ ∫ a b V ( t ) d F B ( t ) → w ? ∫ a w F A ( t ) d t ≥ w ? ∫ a w F B ( t ) d t → ∫ a w F B ( t ) d t ≥ ∫ a w F A ( t ) d t \int_a^bV(t)dF_A(t)\geq\int_a^bV(t)dF_B(t)\to w-\int_a^wF_A(t)dt\geq w-\int_a^wF_B(t)dt\to \int_a^wF_B(t)dt\geq \int_a^wF_A(t)dt ∫ab?V(t)dFA?(t)≥∫ab?V(t)dFB?(t)→w?∫aw?FA?(t)dt≥w?∫aw?FB?(t)dt→∫aw?FB?(t)dt≥∫aw?FA?(t)dt
证毕。
-