ResNet在2015年被提出,在ImageNet比赛classification任务上获得第一名,因为它“简单与实用”并存,之后很多方法都建立在ResNet50或者ResNet101的基础上完成的,检测,分割,识别等领域都纷纷使用ResNet,Alpha zero也使用了ResNet,所以可见ResNet确实很好用。
下面我们从实用的角度去看看ResNet。
1.ResNet意义
随着网络的加深,出现了训练集准确率下降的现象,我们可以确定这不是由于Overfit过拟合造成的(过拟合的情况训练集应该准确率很高);所以作者针对这个问题提出了一种全新的网络,叫深度残差网络,它允许网络尽可能的加深,其中引入了全新的结构如图1;
图1 Shortcut Connection
这里问大家一个问题
残差指的是什么?
其中ResNet提出了两种mapping:一种是identity mapping(身份映射),指的就是图1中”弯弯的曲线”,另一种是residual mapping(残差映射),指的就是除了”弯弯的曲线“那部分,所以最后的输出是 y=F(x)+x。identity mapping顾名思义,就是指本身,也就是公式中的x,而residual mapping指的是“差”,也就是y?x,所以残差指的就是F(x)部分。
为什么ResNet可以解决“随着网络加深,准确率不下降”的问题?
除了实验证明外:
表1,Resnet在ImageNet上的结果
理论上,对于“随着网络加深,准确率下降”的问题,Resnet提供了两种选择方式,也就是identity mapping和residual mapping,如果网络已经到达最优,继续加深网络,residual mapping将被push为0,只剩下identity mapping,这样理论上网络一直处于最优状态了,网络的性能也就不会随着深度增加而降低了。
2.ResNet结构
它使用了一种连接方式叫做“shortcut connection”,顾名思义,shortcut就是“抄近道”的意思,看图1我们就能大致理解。这是文章里面的图,我们可以看到一个“弯弯的弧线“这个就是所谓的”shortcut connection“,也是文中提到identity mapping,这张图也诠释了ResNet的真谛,当然大家可以放心,真正在使用的ResNet模块并不是这么单一,文章中就提出了两种方式:
图2 两种ResNet设计
这两种结构分别针对ResNet34(左图)和ResNet50/101/152(右图),一般称整个结构为一个”building block“(构件)。其中右图又称为”bottleneck design”(瓶颈设计),目的一目了然,就是为了降低参数的数目,第一个1x1的卷积把256维channel降到64维,然后在最后通过1x1卷积恢复,整体上用的参数数目:1x1x256x64 + 3x3x64x64 + 1x1x64x256 = 69632,而不使用bottleneck的话就是两个3x3x256的卷积,参数数目: 3x3x256x256x2 = 1179648,差了16.94倍。
对于常规ResNet,可以用于34层或者更少的网络中,对于Bottleneck Design的ResNet通常用于更深的如101这样的网络中,目的是减少计算和参数量(实用目的)。
问大家一个问题:
如图1所示,如果F(x)和x的channel个数不同怎么办,因为F(x)和x是按照channel维度相加的,channel不同怎么相加呢?
针对channel个数是否相同,要分成两种情况考虑,如下图:
图3 两种Shortcut Connection方式
如图3所示,我们可以清楚的”实线“和”虚线“两种连接方式:
- 实线的的Connection部分(”第一个粉色矩形和第三个粉色矩形“)都是执行3x3x64的卷积,他们的channel个数一致,所以采用计算方式:
y=F(x)+x
- 虚线的的Connection部分(”第一个绿色矩形和第三个绿色矩形“)分别是3x3x64和3x3x128的卷积操作,他们的channel个数不同(64和128),所以采用计算方式:
y=F(x)+Wx
其中W是卷积操作,用来调整x的channel维度的;
下面我们看看两个实例:
图4 两种Shortcut Connection方式实例(左图channel一致,右图channel不一样)
3.ResNet50和ResNet101
这里把ResNet50和ResNet101特别提出,主要因为它们的出镜率很高,所以需要做特别的说明。给出了它们具体的结构:
表2,Resnet不同的结构
首先我们看一下表2,上面一共提出了5中深度的ResNet,分别是18,34,50,101和152,首先看表2最左侧,我们发现所有的网络都分成5部分,分别是:conv1,conv2_x,conv3_x,conv4_x,conv5_x,之后的其他论文也会专门用这个称呼指代ResNet50或者101的每部分。
拿101-layer那列,我们先看看101-layer是不是真的是101层网络,首先有个输入7x7x64的卷积,然后经过3 + 4 + 23 + 3 = 33个building block,每个block为3层,所以有33 x 3 = 99层,最后有个fc层(用于分类),所以1 + 99 + 1 = 101层,确实有101层网络;
注:101层网络仅仅指卷积或者全连接层,而激活层或者Pooling层并没有计算在内;
这里我们关注50-layer和101-layer这两列,可以发现,它们唯一的不同在于conv4_x,ResNet50有6个block,而ResNet101有23个block,查了17个block,也就是17 x 3 = 51层。
4.基于ResNet101的Faster RCNN
文章中把ResNet101应用在Faster RCNN上取得了更好的结果,结果如下:
表3,Resnet101 Faster RCNN在Pascal VOC07/12 以及COCO上的结果
这里有个问题:
Faster RCNN中RPN和Fast RCNN的共享特征图用的是conv5_x的输出么?
针对这个问题我们看看实际的基于ResNet101的Faster RCNN的结构图:
图5 基于ResNet101的Faster RCNN
图5展示了整个Faster RCNN的架构,其中蓝色的部分为ResNet101,可以发现conv4_x的最后的输出为RPN和RoI Pooling共享的部分,而conv5_x(共9层网络)都作用于RoI Pooling之后的一堆特征图(14 x 14 x 1024),特征图的大小维度也刚好符合原本的ResNet101中conv5_x的输入;
最后大家一定要记得最后要接一个average pooling,得到2048维特征,分别用于分类和框回归。