DescriptionWe give the following inductive definition of a “regular brackets” sequence:the empty sequence is a regular brackets sequence,
if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
if a and b are regular brackets sequences, then ab is a regular brackets sequence.
no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:(), [], (()), ()[], ()[()]while the following character sequences are not:(, ], )(, ([)], ([(]Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].InputThe input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.OutputFor each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.Sample Input((()))
()()()
([]])
)[)(
([][][)
end
Sample Output6
6
4
0
6
SourceStanford Local 2004
题目大意:给一个括号序列,问序列中合法的括号最多有多少个,若A合法,则[A],(A)均合法,若A,B合法则AB也合法
题目分析:和POJ 1141那道经典括号匹配类似,这题更简单一些,想办法把问题转化,既然要求最大的括号匹配数,我们考虑加最少的括号,使得整个序列合法,这样就转变成1141那题,开下脑动类比二分图最大匹配的性质,最大匹配+最大独立集=点数,显然要加入最少的点使序列合法,则加的最少的点数即为|最大独立集|,我们要求的是原序列的|最大匹配|,以上纯属yy,下面给出转移方程,和1141一模一样
dp[i][i] = 1;
然后枚举区间长度
1)外围匹配:dp[i][j] = dp[i + 1][j - 1];
2)外围不匹配,枚举分割点:dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j]); (i <= k < j)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int const INF = 0x3fffffff;
char s[205];
int dp[205][205];int main()
{while(scanf("%s", s) != EOF && strcmp(s, "end") != 0){int len = strlen(s);memset(dp, 0, sizeof(dp));for(int i = 0; i < len; i++)dp[i][i] = 1;for(int l = 1; l < len; l++){for(int i = 0; i < len - l; i++){int j = i + l;dp[i][j] = INF;if((s[i] == '(' && s[j] == ')') || (s[i] == '[' && s[j] == ']'))dp[i][j] = dp[i + 1][j - 1];for(int k = i; k < j; k++)dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j]);}}printf("%d\n", len - dp[0][len - 1]);}
}