修改一个程序,说的它形成完整的三对角矩阵,A=diag(a,-1)+diag(b,0)+diag(c,1),并使用反斜线运算符计算斜率。
程序如下:
function v= splinetx(x,y,u)
%SPLINETX Textbook spline function.
% v = splinetx(x,y,u) finds the piecewise cubic interpolatory
% spline S(x), with S(x(j)) = y(j), and returns v(k) = S(u(k)).
%
% See SPLINE, PCHIPTX.
% First derivatives
h = diff(x);
delta = diff(y)./h;
d = splineslopes(h,delta);
% Piecewise polynomial coefficients
n = length(x);
c = (3*delta - 2*d(1:n-1) - d(2:n))./h;
b = (d(1:n-1) - 2*delta + d(2:n))./h.^2;
% Find subinterval indices k so that x(k) <= u < x(k+1)
k = ones(size(u));
for j = 2:n-1
k(x(j) <= u) = j;
end
% Evaluate spline
s = u - x(k);
v = y(k) + s.*(d(k) + s.*(c(k) + s.*b(k)));
% -------------------------------------------------------
function d = splineslopes(h,delta)
% SPLINESLOPES Slopes for cubic spline interpolation.
% splineslopes(h,delta) computes d(k) = S'(x(k)).
% Uses not-a-knot end conditions.
% Diagonals of tridiagonal system
n = length(h)+1;
a = zeros(size(h)); b = a; c = a; r = a;
a(1:n-2) = h(2:n-1);
a(n-1) = h(n-2)+h(n-1);
b(1) = h(2);
b(2:n-1) = 2*(h(2:n-1)+h(1:n-2));
b(n) = h(n-2);
c(1) = h(1)+h(2);
c(2:n-1) = h(1:n-2);
% Right-hand side
r(1) = ((h(1)+2*c(1))*h(2)*delta(1)+ ...
h(1)^2*delta(2))/c(1);
r(2:n-1) = 3*(h(2:n-1).*delta(1:n-2)+ ...
h(1:n-2).*delta(2:n-1));
r(n) = (h(n-1)^2*delta(n-2)+ ...
(2*a(n-1)+h(n-1))*h(n-2)*delta(n-1))/a(n-1);
% Solve tridiagonal linear system
d = tridisolve(a,b,c,r);
------解决方案--------------------------------------------------------
你的tridisolve函数没有定义。。。自己编的吗?那也要给出来。