?
BoneCP主要使用了下面几种第三方包:
1、Google Guava library?? The Guava project contains several of Google's core libraries that we rely on in our Java-based projects: collections, caching, primitives support, concurrency libraries, common annotations, string processing, I/O, and so forth.
2、SLF4J? 日志管理
3、jsr166y? Doug Lea写的一个并发包,代码量不多,已合并到JDK7的JUC包中。BoneCP中使用该包下的LinkedTransferQueue队列来保存Connection对象:
?
if (config.getMaxConnectionsPerPartition() == config.getMinConnectionsPerPartition()){ // if we have a pool that we don't want resized, make it even faster by ignoring // the size constraints. connectionHandles = queueLIFO ? new LIFOQueue<ConnectionHandle>() : new LinkedTransferQueue<ConnectionHandle>(); } else { connectionHandles = queueLIFO ? new LIFOQueue<ConnectionHandle>(this.config.getMaxConnectionsPerPartition()) : new BoundedLinkedTransferQueue<ConnectionHandle>(this.config.getMaxConnectionsPerPartition()); }
?这段神奇的代码还没研究明白用意,当设置每个partition中的最大连接数和最小连接数相等时,保存Connection对象的队列就使用无参构造函数,也就是队列的最大值为Integer.MAX_VALUE,如果不相等则队列的最大值为用户设置的最大值。
BoneCP只使用到jsr166y中的3个类,合成到它自己的jar里:
?
?
什么是Fork-Join模式?
Fork-Join是把一个任务递归的分解成多个子任务,直到每个子问题都足够小,然后把这些问题放入队列中等待处理(fork步骤),接下来等待所有子问题的结果(join步骤),最后把多个结果合并到一起。
?
?更多的Fork-Join学习资料:
JDK 7 中的 Fork/Join 模式
Java 理论与实践: 应用 fork-join 框架
Java 理论与实践: 应用 fork-join 框架,第 2 部分
?
?例子:在一个文本里有N多个数据,使用多线程最快求和
这个是之前用JUC包实现的一个问题,使用Fork-Join模式很容易解决上JUC时的问题:
此算法的缺点有待改进的地方是结果汇总时是被动去检测,而不是某个结果计算完成后主动去汇总,既然是分段计算,如果数据量足够大时,应该采用递归去实现分段汇总会更好
?注:下面代码在JDK7下运行
/** * Huisou.com Inc. * Copyright (c) 2011-2012 All Rights Reserved. */ package thread; import java.util.concurrent.ForkJoinPool; import java.util.concurrent.RecursiveAction; /** * @description * * @author chenzehe * @email hljuczh@163.com * @create 2013-3-19 上午10:12:31 */ public class CalculateWithForkJoin { public static void main(String[] args) { int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 }; NumbersStructure numbersStructure = new NumbersStructure(numbers, 0, numbers.length); int threshold = 5; int nThreads = 5; CalculateForkJoinTask calculateForkJoinTask = new CalculateForkJoinTask(numbersStructure, threshold); ForkJoinPool forkJoinPool = new ForkJoinPool(nThreads); forkJoinPool.invoke(calculateForkJoinTask); int sum = calculateForkJoinTask.sum; System.out.println(sum); } } class CalculateForkJoinTask extends RecursiveAction { private static final long serialVersionUID = -3958126944793236011L; private final int threshold; private final NumbersStructure numbersStructure; public int sum; public CalculateForkJoinTask(NumbersStructure numbersStructure, int threshold) { this.numbersStructure = numbersStructure; this.threshold = threshold; } @Override protected void compute() { if (numbersStructure.size < threshold) { sum = numbersStructure.calculateSum(); } else { int midpoint = numbersStructure.size / 2; CalculateForkJoinTask left = new CalculateForkJoinTask(numbersStructure.subproblem(0, midpoint), threshold); CalculateForkJoinTask right = new CalculateForkJoinTask(numbersStructure.subproblem(midpoint + 1, numbersStructure.size), threshold); invokeAll(left, right); sum = left.sum + right.sum; } } } class NumbersStructure { private final int[] numbers; private final int start; private final int end; public final int size; public NumbersStructure(int[] numbers, int start, int end) { this.numbers = numbers; this.start = start; this.end = end; this.size = end - start; } /** * 求和 */ public int calculateSum() { int sum = 0; for (int i = start; i <= end && i < numbers.length; i++) { sum += numbers[i]; } return sum; } /** * 问题分解 */ public NumbersStructure subproblem(int subStart, int subEnd) { return new NumbersStructure(numbers, start + subStart, start + subEnd); } }
?
?
?
?