问题描述
每个人,所以我正在编写一个解决二次方程的程序(一个加倍的根和两个加倍的根,这似乎可行,但是以某种方式我无法解决复杂的根吗?有什么帮助。
import javax.swing.JOptionPane;
public class QuadMethods {
static double a=0;
static double b=0;
static double c=0;
public static void main(String[] args) {
getUserInput(); // gets values into a, b, and c
double disc = getTheDiscriminant(a,b,c);
if (disc ==0) {
displayDoubledRealRoot(a,b,c);
//} else if (disc < 0) {
//displayComplexConjugates();
} else if (disc > 0) {
displayUnequalRealRoots(a,b,c);
//} else {
//System.out.println("Help! Arithmetic has failed!");
//
}
}
public static void displayUnequalRealRoots(double a, double b, double c) {
double disc = getTheDiscriminant(a,b,c);
double r1 = (-b+Math.sqrt(disc)/ (2*a));
double r2 = (-b-Math.sqrt(disc)/ (2*a));
String s = "two roots " + r1 + " and " + r2;
JOptionPane.showMessageDialog(null, s);
}
public static void displayDoubledRealRoot(double a, double b, double c) {
String s = "One doubled root = " + (-b/(2*a));
JOptionPane.showMessageDialog(null, s);
}
public static double getTheDiscriminant(double a, double b, double c) {
return b*b - 4*a*c;
}
public static void getUserInput() {
JOptionPane.showMessageDialog(null, "Getting coeffecients for ax^2+bx+c=0");
a = getANumber("a");
b = getANumber("b");
c = getANumber("c");
}
public static double getANumber(String p) {
boolean iDontHaveANumberYet = true;
double r = 0;
do {
try {
String aStr = JOptionPane.showInputDialog("Enter \"" + p + "\"");
r = Double.parseDouble(aStr);
iDontHaveANumberYet = false;
} catch (Exception e) {
JOptionPane.showMessageDialog(null, "Hey, I can't deal with that. Must enter legal number.");
}
} while (iDontHaveANumberYet);
return r;
}
}
1楼
解决方案:
import javax.swing.JOptionPane;
public class QuadMethods {
static double a=0;
static double b=0;
static double c=0;
public static void main(String[] args) {
getUserInput(); // gets values into a, b, and c
double disc = getTheDiscriminant(a,b,c);
if (disc ==0) {
displayDoubledRealRoot(a,b,c);
} else if (disc > 0) {
displayUnequalRealRoots(a,b,c);
} else {
// New method
displayComplexRoots(a,b,c);
}
}
public static void displayUnequalRealRoots(double a, double b, double c) {
double disc = getTheDiscriminant(a,b,c);
double r1 = (-b+Math.sqrt(disc)/ (2*a));
double r2 = (-b-Math.sqrt(disc)/ (2*a));
String s = "two roots " + r1 + " and " + r2;
JOptionPane.showMessageDialog(null, s);
}
public static void displayDoubledRealRoot(double a, double b, double c) {
String s = "One doubled root = " + (-b/(2*a));
JOptionPane.showMessageDialog(null, s);
}
public static double getTheDiscriminant(double a, double b, double c) {
return b*b - 4*a*c;
}
// New method
public static void displayComplexRoots(double a, double b, double c) {
double disc = 4 * a * c - b * b;
double dobleA = 2 * a;
String s = "two roots (" + (-b/dobleA) + "+" + (Math.sqrt(disc)/dobleA) + "i) and ("+ (-b/dobleA) + "" + (-Math.sqrt(disc)/dobleA) + "i)";
JOptionPane.showMessageDialog(null, s);
}
public static void getUserInput() {
JOptionPane.showMessageDialog(null, "Getting coeffecients for ax^2+bx+c=0");
a = getANumber("a");
b = getANumber("b");
c = getANumber("c");
}
public static double getANumber(String p) {
boolean iDontHaveANumberYet = true;
double r = 0;
do {
try {
String aStr = JOptionPane.showInputDialog("Enter \"" + p + "\"");
r = Double.parseDouble(aStr);
iDontHaveANumberYet = false;
} catch (Exception e) {
JOptionPane.showMessageDialog(null, "Hey, I can't deal with that. Must enter legal number.");
}
} while (iDontHaveANumberYet);
return r;
}
}
具有复数的一般解:
public class Complex {
double r;
double i = 0;
public Complex(double real, double imaginary) {
this.r = real;
this.i = imaginary;
}
public Complex(double real) {
this.r = real;
}
public Complex add(Complex c){
return new Complex(r+c.r, i+c.i);
}
public Complex cross(Complex c){
return new Complex(r*c.r - i*c.i, i*c.r + r*c.i);
}
public double getR() {
return r;
}
public double getI() {
return i;
}
@Override
public String toString() {
String result = Double.toString(r);
if (i < 0) {
result += " - " + ((i != -1)?Double.toString(-i):"") + "i";
} else if (i > 0) {
result += " + " + ((i != 1)?Double.toString(i):"") + "i";
}
return result;
}
public Complex[] squareRoot(){
double r2 = r * r;
double i2 = i * i;
double rR = Math.sqrt((r+Math.sqrt(r2+i2))/2);
double rI = Math.sqrt((-r+Math.sqrt(r2+i2))/2);
return new Complex[]{new Complex(rR, rI),new Complex(-rR, rI)};
}
public static Complex[] quadraticsRoot(double a, double b, double c) {
Complex[] result = new Complex(b*b - 4*a*c).squareRoot();
Complex bNegative = new Complex(-b);
Complex divisor = new Complex(1.0d / (2 * a));
for (int j = 0; j < result.length; j++) {
result[j] = bNegative.add(result[j]).cross(divisor);
}
return result;
}
public static void main(String[] args) {
Complex[] sol = quadraticsRoot(1,-10,34);
System.out.println(sol[0]);
System.out.println(sol[1]);
}
}